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Abstract—Self-driving labs are transforming scientific research
and accelerating experimentation using software-controlled lab
equipment. These labs are exposed to human errors by inexperi-
enced researchers working in the lab (e.g., setting incorrect target
location could cause a robot arm to collide with an expensive
piece of equipment). We present RABIT, a Robot Arm Bug
Intervention Tool, which (i) allows systematically specifying safety
rules across diverse devices and (ii) evaluates and enforces these
rules using simulation, a low-fidelity testbed, and a production
environment. We report our experience adapting RABIT for the
Hein Lab, a state-of-the-art research lab that blends advanced
robotics with synthetic organic chemistry.

Index Terms—self-driving labs, rule-based anomaly detection

I. INTRODUCTION

Manufacturing and material synthesis research involves re-
peated physical experiments that iterate through the parameter
search space. Self-driving labs automate every step of this
process using robot arms and software-controlled equipment,
allowing researchers to accelerate discovery. Such labs are
emerging across diverse fields, such as chemistry [18, 40],
nanotechnology [39], and energy technology [20, 30]. Exam-
ples include Polybot [11] at the Argonne National Laboratory,
the Matter Lab [7] at the University of Toronto, and the Hein
Lab [4] at the University of British Columbia.

Fig. 1(a) illustrates a prototypical experiment deck in the
Hein Lab. Each robot arm and lab device can be individually
programmed using device-specific APIs. However, lab engi-
neers typically write lightweight python wrappers over these
APIs, providing an easy-to-use programming environment, as
in Fig. 1(b). Hence, even students and young researchers with
no experience in computer networking or hardware interfacing
can quickly learn to automate their research.

While self-driving labs revolutionize research and experi-
mentation, with increased automation there is the risk that even
small, inadvertent programming errors can cause nontrivial
damage to humans or expensive equipment in the lab.1 Since
self-driving labs are perennially in prototyping mode, such
errors are more likely than in large-scale industrial manufac-
turing plants. Our goal is to defend self-driving research labs

1For example, the dosing device shown in Fig. 1(a) has a software-
controlled glass door; there have been instances of the door breaking be-
cause the programmer forgot to call open_door(), i.e., Line 13 in the
doseSolid(amount) definition in Fig. 1(b) was omitted. Similarly, if, say,
Line 15 in the doseSolid(amount) definition is omitted inadvertently, the
robot arm does not collect the vial back from the dosing device, which then
collides with the new vial in the subsequent iteration.
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(a) An experiment deck in the Hein Lab

(b) Python experiment script for automated solubility measurement

Fig. 1. An experiment deck and its corresponding programming environment
at Hein Lab [4]. The object dosing_device in the main script points to the
Python class Dosing_Device. The Python class exports convenient APIs
for many common operations involving the dosing device and the robot arm
(shown in the top figure) – such as doseSolid(amount) – while hiding
low-level device communication details from the users.

against misconfigurations and programming errors that can
lead to unsafe behaviors, without affecting programmer pro-
ductivity and without slowing down prototyping capabilities.

Currently, the effect of potentially unsafe commands is
mitigated to some extent by (i) device-specific thresholds
embedded inside device firmware, e.g., the hotplate in Fig. 1(a)
allows setting a safe temperature limit [6], and (ii) checks
added by programmers to their experiment scripts, e.g., Lines
10-11 in Fig. 1(b) ensure that the dosing amount does not ex-
ceed 10mg. Device-specific thresholds cannot prevent unsafe
behaviors that result from interaction between two devices,
e.g., a robot arm may not accept coordinates that will force
its arm to hit the ground, but its firmware may not prevent

1



TABLE I
COMPARING THE CAPABILITIES OF RABIT’S THREE STAGES

Capabilities Simulator Testbed Production

Speed of exploration / testing High Medium Low
Device precision and quality Low Medium High
Accuracy of results Low Medium High
Risk of damage Low Medium High

a collision with another robot arm. In contrast, checks inside
programming scripts can be more comprehensive, as program-
mers derive these from their holistic knowledge. Unfortunately,
such checks are added ad hoc, scattered all over the program,
making this approach both error-prone and cumbersome.

We present RABIT, a Robot Arm Bug Intervention Tool
for systematically specifying rules, testing experiment scripts,
and enforcing safe execution. We summarize RABIT’s key
ideas and contributions below. Although we design RABIT in
consultation with the Hein Lab, the ideas apply to self-driving
labs, particularly those containing diverse equipment.

Gathering rules. Identifying an exhaustive set of rules that
define unsafe behavior over all possible executions across all
devices is nontrivial. To address this challenge, we formulated
rules using information gathered from three sources: an exist-
ing robotic arm dataset (RAD) [12], the Hein Lab experiment
scripts, and researchers in the Hein Lab. Together, these allow
us to identify both general-purpose rules that apply to a broad
class of self-driving labs and custom rules that are specific to
an individual self-driving lab, such as the Hein Lab.

Enforcing rules. As our goal is to avoid unsafe behavior,
we need to actually attempt to execute such unsafe behaviors
to determine if our system detects them. However, a bug
in the detection could have devastating consequences. To
avoid this, we use a three-stage framework for detecting rule
violations: (i) simulation, for quick testing of individual robot
arm movements; (ii) a low-fidelity, inexpensive testbed for
testing physical actions without damaging side effects; and
lastly, (iii) testing in the production environment. Table I
provides a quick summary of their capabilities.

Contributions. Our main contribution is demonstrating
how the aforementioned key ideas can be realized in a pro-
duction and fully operational state-of-the-art self-driving lab.
Specifically, we present a report summarizing our experience
adopting RABIT in the Hein Lab (see Sections II to IV). We
also discuss RABIT’s usability and broader applicability to
other self-driving labs (see Section V).

II. RABIT
We consider the Hein Lab’s experiment deck shown in

Fig. 1(a) as our production environment. It consists of a
lab computer, a six-axis robot arm [16], and five automation
devices: a solid dosing device [8], an automated syringe pump
[13], a centrifuge [3], a thermoshaker [5], and a hotplate [5].

A. Construction of the Rulebase
We first examined the Robot Arm Dataset (RAD), which

includes three months of command trace data captured in the

Hein Lab [12]. We mined the dataset to identify rules implied
by the sequences of commands. We identified rules that ought
to apply to all self-driving labs, e.g., device doors must be
opened before a robot arm can enter them, as well as rules that
seemed unique to the lab from which the data were collected,
e.g., solids must be added to containers before liquids.

Next, we consulted with the Hein Lab researchers, who
emphasized the need to avoid collisions of robot arms with
nearby equipment or people, and that the temperature of the
hotplate must never exceed the specified threshold. When their
safety criteria conflicted with RAD-inferred rules, we used the
rules suggested by our collaborators.

Finally, we examined their experiment scripts, looking for
explicit checks. We retained the distinction observed in RAD
that rules fall into two categories: general-purpose rules that
apply to most labs and custom rules specific to a particular lab.
This design makes it easier to adapt to a new environment by
describing only the items specific to that environment.

Based on the three sources discussed above, we classified
each device (robot arms or software-controlled devices) into
one of four types. (1) Container: any object that can contain
a substance (solid, liquid etc.) and typically has a stopper
through which the substance goes in or out. (2) Robot Arm:
a system that moves from one location to another and has
the ability to pick up, move, and place objects. (3) Dosing
System: any system used for adding substances into a con-
tainer during the experiment. (4) Action Device: any system
with ‘active/inactive’ states, where the active state refers to
the system performing an action, such as heating, stirring, or
shaking. Both dosing systems and action devices might have
doors preventing an object from entering or exiting.

For each device type, we identify state variables that fully
describe the device, e.g., deviceDoorStatus indicates if a
device’s door is open or closed and robotArmHolding indicates
if the robot arm gripper is holding an object. We also identify,
for each device type, actions, which can modify the associated
state variables. Each action has a set of preconditions, which
must hold for the action to be allowed, and postconditions,
which must hold after the action completes (e.g., see Table II).
The complete set of all such descriptions constitutes the
RABIT rulebase. Tables III and IV show all the general-
purpose and custom, lab-specific rules (respectively).

B. Detecting Rule Violations

The algorithm in Fig. 2 describes RABIT’s execution. In
short, RABIT intercepts each action; if the preconditions are
not met, it stops the experiment (to prevent execution of unsafe
actions) and alerts the user; and after each action, checks for
device malfunctions. RABIT stops an experiment preemptively
based on the Hein Lab’s recommendation. However, this can
be dangerous at times, e.g., if a robot arm is left holding a
volatile substance, a person can bump into it. In such cases, a
fail-safe scenario may be recommended instead.

Lines 1-3. When RABIT starts, it acquires the initial state
of all devices, Sinitial, using a set of status commands. It then
sets Scurrent, which denotes the current state, to Sinitial.
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TABLE II
EXAMPLE ACTIONS, PRECONDITIONS, AND POSTCONDITIONS ASSOCIATED WITH A ROBOT ARM DEVICE TYPE

Example actions associated with a robot arm device Preconditions Action labels Postconditions

Moving a robot arm inside a specific device deviceDoorStatus[device] = 1 move robot inside robotArmInside[robot][device] = 1
Using a robot arm to pick up an object (a vial in this case) robotArmHolding[robot] = 0 pick object robotArmHolding[robot] = 1
Using a robot arm to place an object (a vial in this case) robotArmHolding[robot] = 1 place object robotArmHolding[robot] = 0

TABLE III
GENERAL RULES FOR SELF-DRIVING LABS

No. General rules

1 Robot arm cannot move into a device whose door is closed
2 Device door cannot be closed when the robot is inside the device
3 Robot arm can move to any location not occupied by any object
4 Robot arm can pick up an object when it isn’t holding something
5 Action device can perform actions when a container is inside it
6 Action device can perform actions when a container is not empty
7 A substance can be transferred from a delivering container to a

receiving container when neither has a stopper on it
8 A substance can be transferred from a filled delivering container to

an empty or partially filled receiving container
9 Dosing systems or action devices with doors should start dosing or

performing an action, respectively, only when their doors are closed
10 The door of the dosing systems or action devices with doors should

be closed when they are running
11 The action value, such as temperature or stirring speed, for a given

action device should not exceed its predefined threshold

TABLE IV
CUSTOMIZED RULES FOR THE HEIN LAB

No. Customized rules

1 Add liquid to a container only if the container already has solid
2 Place the container in the centrifuge only if the container contains

both a solid and a liquid
3 Place the container in the centrifuge only if the red dot on centrifuge

faces North
4 Place the container in the centrifuge only if the container has a

stopper on it

Lines 5-7. The system transitions from one state to another
via a single command, denoted anext, which is responsible for
executing an action. Each action has a precondition that must
hold before the command can be executed (e.g., see Table II).
If Scurrent does not satisfy anext’s precondition, RABIT consid-
ers the state-action pair invalid and raises an alert.

Lines 8-10. If anext is a move command for a robot arm,
RABIT checks if the robot arm can move without colliding
with other devices or bumping into walls or the ground. We
designed an Extended Simulator (see Section III) that models
other automation devices as 3D stationary objects and checks
if the robot arm’s trajectory causes a collision. In the absence
of such a simulator, only the target location is checked for
potential collisions; the precondition for every move command
requires that there be no object in the target location.

Lines 11-15. RABIT computes the expected state, Sexpected,
using the current state, Scurrent, and the action’s postconditions.
It then executes anext and afterwards acquires the actual state
of all devices, i.e., Sactual (using status commands, like at the

1: Input: Initial state of the self-driving lab Sinitial

2: Output: Alert, if a safety violation is detected
3: Scurrent ← SetState(Sinitial)
4: while ¬SystemReboot do
5: Fetch the next command anext

6: if ¬Valid(Scurrent, anext) then
7: alertAndStop(“Invalid Command!”)
8: if isRobotCommand(anext) then
9: if SimAvailable and ¬ValidTrajectory(anext)

then
10: alertAndStop(“Invalid trajectory!”)
11: Sexpected ← UpdateState(Scurrent, anext)
12: Execute command anext

13: Sactual ← FetchState()
14: if Sactual ̸= Sexpected then
15: alertAndStop(“Device malfunction!”)
16: Scurrent ← SetState(Sactual)

Fig. 2. RABIT’s Execution Algorithm

initialization time). If Sactual ̸= Sexpected, RABIT assumes that
at least one device malfunctioned and raises an alert.

C. Implementation

The lab researcher configures RABIT for their lab by
instantiating their devices in the JSON files that we provide.
They must categorize each device into its device type and
enter its properties, including the class name that provides the
device’s APIs and additional properties (such as the presence
and position of a door). Additionally, for each device, they
should add the commands responsible for executing actions
and for retrieving the device’s state. They can also define lab-
specific rules that become part of the custom rulebase and new
device categories, if they have devices that do not belong to
any of the four specified device types.

The JSON format provides a simple and standardized way to
represent information, making it easy for researchers to modify
and update the device information. We use the information
from the JSON files to populate a state transition table, which
is a two-dimensional labeled data structure similar to Table II.

We use an open-source tracing framework RATracer [22],
which instruments the Python experiment scripts to intercept
and trace all device commands at run time. We reconfigure
RATracer such that every time it traces a command, it first
checks with RABIT if the command is safe to run: if RABIT
raises an alert, the experiment is halted (RATracer raises a
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Python exception in this case); otherwise, the command is
forwarded to the device and executed.

RABIT also maintains a list of device connection parame-
ters, which are extracted from the programming scripts. It uses
these parameters to fetch the state of all devices, i.e., as part
of the FetchState() function on Line 13 in the algorithm.

We evaluated the latency overhead due to RABIT. With-
out the Extended Simulator, RABIT incurs approximately
0.03s overhead (1.5%), which is generally imperceptible to
humans [26]. However, with the Extended Simulator, RABIT
incurs approximately 2s overhead (112%). The simulator over-
head arises mainly from its Graphical User Interface (GUI),
which runs in a virtual machine and is invoked each time
RABIT checks for collisions. The overhead is acceptable
during testing, but for deployment, we plan to bypass the GUI
entirely when interacting with the simulator.

III. TESTING PLATFORMS

Extended simulator. The Hein Lab uses the six-axis UR3e
robot arm [16], which comes with an accurate simulator UR-
Sim [1]. However, URSim does not model other automation
devices. It also does not account for collisions when the robot
arm moves through its mounting platform or hits the walls.

We augmented URSim to develop an Extended Simulator.
In the augmented version, we model each device on the
experiment deck as a 3D cuboid object (as shown in Fig. 3).
Further, by continuously polling the robot arm’s trajectory and
comparing it with the 3D objects’ coordinates, the Extended
Simulator can detect if the robot arm is likely to collide with
one of the automation devices and alert the user.

Testbed. The testbed emulates the Hein Lab using lower
precision robot arms and low-fidelity device mockups. It
provides an environment for executing potentially unsafe pro-
grams, so that the chances of these programs causing a damage
when deployed in a production environment are significantly
reduced. The testbed also lets us experiment with intentionally
unsafe workflows to check if RABIT detects them.

Thermoshaker

ViperX 
Robot Arm

Dosing Device

Ned2 
Robot Arm

Grid Hotplate

Fig. 4. Testbed

Our testbed setup (Fig. 4) consists of a lab computer that
controls five low-fidelity objects and two robot arms: a six-
axis ViperX [17] and a six-axis Ned2 [9]. Both robot arms are
designed for educational and research purposes. They have the
same degree of freedom as the UR3e, but limited capabilities
and precision. The low-fidelity objects resemble the shapes
and functionalities of their counterparts in the Hein Lab and
are realized using cardboard mockups or toy devices.

The testbed allows us to test scenarios for which the
simulator is insufficient, such as using multiple robot arms
or checking for collisions that occur if a robot arm is holding
a vial and the vial (not the arm itself) collides with a device.

IV. EVALUATION

We assess whether the rules are accurately programmed in
RABIT by checking if RABIT successfully detects every rule
violation. We did not disable any existing safety mechanisms
built into the devices or any ad-hoc safety checks added in
the experiment scripts by the lab researchers; these worked in
tandem with RABIT. For evaluation, we ensure that there are
no intentional bugs in the JSON configurations. We first con-
ducted controlled experiments on both the Extended Simulator
and the testbed. We deliberately executed unsafe scenarios
designed to trigger each rule in the rulebase. For example,
in the simulator, we attempted to move UR3e inside the grid,
violating rule 3 in Table III. On the testbed, we attempted
to move ViperX inside the dosing device while its door was
closed, violating rule 1 in Table III. RABIT successfully
detected unsafe behavior in all these scenarios.

Next, we conducted uncontrolled experiments, where we
asked one of our collaborators to modify the experiment scripts
(examples are shown in Fig. 5 and Fig. 6) and introduce bugs
in them, as if they were a naive programmer. They were given
access only to the programming scripts on the lab computer but
were not allowed to manually reposition robot arms or move
equipment. Hence, they could easily change the arguments of
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Fig. 5. The example (without the annotations) illustrates a safe tesbed
workflow based on the automated solutbility experiment shown in Fig. 1(b).
The annotated bugs represent the different categories of unsafe behavior
introduced by adding, deleting, or updating one or two lines in the code.
Bug A is introduced by omitting Line 23; hence, when ViperX goes to the
dosing device to pick up the vial (Line 25), it collides with the door. Bug B
introduces Lines 28 and 29, which asks Ned2 to move to a location close to
the grid, while ViperX is also stationed there (after Line 26), causing the two
robot arms to collide. Bug C is introduced by omitting Line 15; ViperX in
this case continues the remaining experiment without a vial.

commands (e.g., enter incorrect coordinates for robot arms),
delete commands (e.g., remove a command to close the door of
a device), or change the order of commands (such as altering
the sequence of locations to which a robot arm was supposed
to move). These experiments (see [15] for details) resulted in
four categories of unsafe behavior.

1. Interactions with the dosing device door. This category
deals with improper handling of device doors, e.g., attempting
to close the door while ViperX is still inside the device or
attempting to move ViperX inside the dosing device while the
door is closed (Bug A in Fig. 5 illustrates the latter scenario).
RABIT raised an alert in all such scenarios.

2. Collisions between two robot arms. Consider Bug B in
Fig. 5. ViperX is stationed just above the grid after placing a
vial. The programmer moves Ned2 to a random_location
close to the grid but different from ViperX’s position. This
resulted in a collision. RABIT did not raise an alarm.

Fig. 6. The above snippet, which is part of a utilities file, contains hard-
coded device-specific location coordinates. Bug D is introduced by changing
the z-axis coordinate of the pickup location (Line 26) from 0.10 to 0.08.
These coordinates are used by viperx_place_object(...) in Fig. 5
(see Lines 8 and 16). Since the new z-axis coordinate is close to 0, when
ViperX is holding a vial, the vial crashes to the ground and breaks.

To detect collision between two robot arms, RABIT requires
a common frame of reference. Since Ned2 and ViperX are
sourced from different vendors, and have varying gripper
sizes and low precision, this is challenging. For example,
transforming both robot arms’ coordinate systems to a global
coordinate system using a transformation matrix [14] resulted
in an average error of 3cm between the expected and com-
puted positions. Hence, we continue using separate coordinate
systems (the de facto approach in the Hein Lab) but adopt a
workaround for preventing such collisions in the first place:
we multiplex robot arm movements in either time or space.

To multiplex in time, we ensure that, at any given time,
only one robot is in motion whereas other robot arms are
in their sleep position and modeled as 3D cuboid spaces
(identically to other devices). For our testbed, we specify
Ned2’s shape and sleep position in ViperX’s environment (and
vice versa) and modify RABIT to add preconditions to enforce
this behavior. For space multiplexing, we add a software-
defined wall between the two robot arms in their environments,
providing each robot with its own dedicated space in which it
can move, while allowing to let them move concurrently.

Our workaround mimics common safety practices in self-
driving labs. However, RABIT provides lab researchers the
ability to formally express these safety practices and enforce
them at runtime, while pushing for more concurrency in their
experiments. External monitoring tools such as 3D cameras
can also help with safety monitoring in such scenarios.
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3. Experiments without a vial. Consider Bug C in Fig. 5.
ViperX does not pick up the vial because the call to func-
tion viperx_pick_up_object() is omitted. ViperX may
also not pick up the vial if there is a bug in the func-
tion definition, e.g., if commands open_gripper() and
close_gripper are reordered. In both cases, RABIT did
not raise an alarm, and the remaining experiment continued
without a vial. Currently, we cannot detect if the robot arm
gripper is holding an object, since we do not have a gripper
pressure sensor or cameras for external monitoring.

4. Changing position coordinates. The robot arms were
asked to move to seemingly infeasible locations, e.g., by
replacing one or more device coordinates with a very high
or a very low value. This resulted in varied behavior.

Bug D in Fig. 6 demonstrates one such scenario where
ViperX’s arm is made to collide with the platform. RABIT
raised an alarm when ViperX was not holding any object.
When ViperX’s gripper was holding a vial, the vial collided
with the platform before RABIT could raise an alarm. RABIT
failed to account that a robot arm’s dimensions may change
if it is holding an object. We modified RABIT to account for
these changes, which successfully detects such collisions.

When ViperX was moved to a very high, clearly infeasible,
position, it failed to compute the trajectory and silently ignored
the command. RABIT did not raise an alarm, even though
silently skipping a command can be potentially unsafe.2 With
Ned2, this was not an issue as it throws an exception and halts
immediately if it cannot compute the trajectory.

Summary. Our collaborator, the “naive” programmer, car-
ried out 16 program changes with potentially unsafe conse-
quences. Initially, RABIT detected 8 of them, resulting in a
detection rate of 50%. After modifying RABIT, it successfully
detected 12 scenarios, resulting in a detection rate of 75%.
With the Extended Simulator on the side, we were able to
detect one more scenario, improving RABIT’s detection rate
to 81%. While the evaluation results are encouraging, without
more practical deployment experience in multiple self-driving
labs and without exhaustive testing (which requires generating
large bug datasets – a challenging task in itself), we do not
know if these numbers are representative of what we might
see in practice. Hence, RABIT’s detection rate reported in the
paper should not be mistaken for its likelihood to detect unsafe
behavior in the wild. Importantly, throughout testing, RABIT
never produced any false positives (i.e., false alarms). This
is important for programmer productivity, i.e., RABIT does
not run the risk of producing alarm fatigue, where researchers
start ignoring alarms because they are raised frequently and
unnecessarily. Table V further categorizes the introduced bugs
based on increasing severity and the potential damage they

2Suppose ViperX needs to move from location A to B and then to C. The
approach via B is intentionally chosen to avoid collision with a nearby object.
However, if the location coordinates for B are accidentally changed to B’ and
ViperX cannot compute the trajectory from A to B’, it skips this move, and
proceeds to move directly from A to C, resulting in a collision. RABIT raised
an alarm when this scenario was replayed in the Extended Simulator, as the
Extended Simulator is able to detect collisions between robot arm trajectories
and other devices, and signal it back to RABIT.

TABLE V
SEVERITY OF BUGS WITH THE TOTAL NUMBER OF BUGS IN EACH

CATEGORY AND THE NUMBER OF BUGS DETECTED BY RABIT

Severity of Bugs Total Detected

Low: Wasting chemical materials 3 1
(e.g., spilling solid out of the vial)

Medium-Low: Breakage of glassware 1 1
(e.g., robot arm dropping a test tube)

Medium-High: Robot arm causing harm to
the environment or inexpensive nearby objects
i.e., platform it is mounted on, the nearby
walls, or the grids that hold the vials

6 4

(e.g., robot arm making holes in a wall)

High: Robot arm breaking the expensive
equipment inside the lab

6 6

(e.g., robot arm breaking a dosing device)

could cause. It includes the total number of bugs in each
category and the number of bugs detected by RABIT.

Due to lack of prior work on security and safety of self-
driving labs, we do not have baselines against which to
compare RABIT or any data on quantitative measures. Before
adopting RABIT, we expect researchers in other self-driving
labs to carry out a qualitative analysis of potentially unsafe
scenarios in their lab, compare those to our test suite, and
determine if RABIT is suitable for their environment.

V. DISCUSSION

We report on RABIT’s usability based on our experience
of deploying it in the Hein Lab. We discuss if RABIT can be
generalized to other self-driving labs and, if customization is
required, the effort needed and the problems encountered when
customizing it for a specific self-driving lab. We also discuss
the open challenges associated with deploying RABIT.

A. Pilot Study with the Hein Lab

We evaluate RABIT’s usability via an informal pilot user
study. Briefly, we provided a 30-minute one-on-one training
session to one of the Hein Lab researchers, participant P. The
training session included an overview of RABIT, the device
configuration files (in JSON format) it uses, and the user study.

After the training session, we provided participant P with
the configuration file templates and asked them to enter all
details to describe their experimental platform. It took them
approximately three hours to enter device-specific information
and a custom rule. In addition, we spent around four hours
debugging the entered information, before we could execute
one of the experiment workflows using RABIT. For example,
participant P accidentally entered a negative sign instead of
a positive sign in a location. There were few JSON syntax
errors as a result of which RABIT misinterpreted some device
information. In hindsight, using a JSON-aware editor [10]
could have helped avoid syntax errors, and more precise JSON
schema specifications could have helped avoid sign errors.

After successfully setting up RABIT, participant P executed
a series of unsafe scenarios in a controlled setting. Some of
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these scenarios were suggested by us and some were done at
participant P’s discretion. For instance, to induce a collision
with the grid, P reduced the height of the location at which
UR3e is supposed to be when picking up the vial from the
grid. In another scenario, P tried to have the dosing device
add more solid than the vial could hold. All unsafe scenarios
attempted by P were detected successfully by RABIT.

After completing the user study, we asked participant P a set
of questions about their experience using RABIT, the strengths
and limitations they identified in RABIT, and suggestions for
improvements they would like to see. P described their overall
experience as challenging yet rewarding. They found entering
information in the JSON files challenging, mainly due to their
unfamiliarity with certain action and status commands for
specific devices. They informed that they would not have been
able to set up RABIT without assistance. At the same time,
they said, “The set up did take a lot of work; now that it is
up I imagine the maintenance is relatively simple”.

Participant P found the capabilities of RABIT to be valu-
able, especially in terms of adding specific properties to
devices. For instance, they highlighted the usefulness of being
able to configure doors for certain devices or stoppers for
containers, which can then be used to detect rule violations.
They also highlighted RABIT’s ability to identify potential
collisions and prevent accidents before they occur, noting its
usefulness in training new users and avoiding damage to com-
ponents. Further, after sharing their experiences where they
collided the robot arm into nearby equipment, P stated, “I see
a lot of benefit for using this when constructing new workflows
or making changes or even adding new components.”

Participant P also mentioned certain limitations or missing
features in the system that affected their experience. RABIT
forced them to simplify certain aspects, for instance, making
a choice between multiple commands for robot movement,
selecting between two different commands used for dosing
liquid with an automated syringe pump. P mentioned that the
complexity of device shapes posed a challenge, as the shape
of many devices do not comply with RABIT’s cuboid spec-
ification. For example, a centrifuge resembles a hemisphere
more than a cuboid and the thermoshaker has a bump at the
top. They suggested that incorporating more detailed shape
descriptions would enhance RABIT’s flexibility.

Based on their overall experience, P stated that they would
likely recommend RABIT to others. As per them, RABIT
is currently suitable for users with relatively simple systems
involving just robot arm movements between locations. How-
ever, before recommending RABIT to users with complex
setups involving multiple components, they suggested making
RABIT more adaptable: “In its current state, I would recom-
mend it for training new graduates on the systems without
risking breakage.” They also said, “I think it’s a great tool
for setting-up or changing workflows in its current iteration
(especially in locations), but with more adaptability to complex
systems it could later be used in full workflows.”

Evaluating RABIT’s usability is at a preliminary stage. We
have currently deployed RABIT in the Hein Lab, with whom

we have a long-standing partnership and trust.

B. Generalizing RABIT to the Berlinguette Lab

We visited another self-driving lab – the Berlinguette Lab
[2] in the University of British Columbia, which performs
cutting-edge research in materials science and chemistry. Our
goal was to evaluate the adaptability of RABIT to this lab,
determining if we could categorize the devices in the lab
according to the four predefined device types and whether the
rules in our rulebase are generalizable to the workflows they
run. This assessment was based on observations, discussions
with personnel, and an examination of their lab setup.

The Berlinguette Lab also has a central workstation running
Python experiment scripts to control robot arms and software-
controlled devices for each automated experiment platform.
The devices that are part of their research and development
experiment platform included the UR3e robot arm, a dosing
device with a door similar to that in the Hein Lab, and a
decapper responsible for capping and uncapping vials. As per
our categorization, the dosing device can be identified as a
dosing system, while the decapper can be classified as an
action device due to its specific capping and uncapping actions.

Another automated experimental platform in the lab was
composed of multiple individual stations, each enclosed with
walls, platforms, and ceilings, and served by a central six-
axis UR5e robot arm. This arm is used for transferring vials
and materials between different stations. Noteworthy stations
included a precursor mixing station with an N9 robot arm and
a spin coater (this can be categorized as an action device as
its primary actions include starting and stopping spinning).
Additionally, there was a spray coating station that has a
hotplate (which can be categorized as an action device), an
automated syringe pump for drawing solvent (which can be
categorized as a dosing system), and ultrasonic nozzles (which
can be categorized as action devices with spraying and not
spraying being their primary actions). The lab also has an
XRF microscopy device emitting x-rays and injecting photons
onto film. We can categorize this device as a set of multiple
action devices in our custom rulebase, or in future expand the
definition of action devices to consider multiple actions.

During discussions with lab personnel, safety concerns were
raised regarding both human and expensive equipment safety.
For safety concerns, they used sensors earlier, but due to the
possibility of frequent false alarms and malfunction, they do
not use them anymore. Therefore, they emphasized the need
for additional safety measures.

RABIT ensures equipment safety, such as collisions of
robot arms with equipment, considering doors. However, in
its current state, RABIT does not consider nearby humans.
However, by incorporating sensors, which could be treated
as a new device class, one could imagine enhancing RABIT
to respond to sensor inputs that indicate a robot arm is
approaching the area that is occupied.

In conclusion, we are able to categorize most of the devices
as part of our four defined device types. We can generalize the
rules defined as most workflows involve adding substances to
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vials, drawing substances from vials, moving vials around,
heating, and spraying. However, there are remaining chal-
lenges posed by the advanced nature of the lab, specifically
limitations related to shape and the complexity of action
devices performing multiple actions simultaneously.

C. Open Challenges

Despite RABIT’s promising capabilities, there are open
challenges to deploying it in more advanced labs. The primary
areas for improvement are ease of use and generalizability.

Real-life, software-controlled devices come in different
shapes and sizes, so we need to expand our device descriptions
to easily handle objects other than cuboids. In a perfect
world, we might photograph the device and use image analysis
to derive its geometry. More fundamentally, our Extended
Simulator is currently designed as an add-on to one specific
robot arm simulator. We would like to examine other robot
arm simulators to determine how best to revise the extensions
to integrate with a wide range of simulators.

Another challenge arises when multiple robot arms move
within the same physical space, which is common in a real-
life setting. We initially addressed this issue by mapping to a
common frame of reference. However, this approach proved
to be impractical due to multiple sources of noise, including
the large margin of errors caused by the lower precision of
testbed robots and variations in their gripper sizes.

Devices might have multiple doors, for instance, for two
robot arms to approach the device simultaneously. In its
current state, RABIT does not handle this. Furthermore, there
is a possibility that multiple commands could be used to
execute a specific action. For instance, there might be two
commands for moving a robot from one location to another.
RABIT currently allows only one command per action.

In conclusion, despite the valuable contributions of RABIT,
open challenges remain. Addressing these challenges is crucial
for realizing the full potential of this technology.

VI. RELATED WORK

The existing literature in the domain of self-driving labs
focuses on making self-driving labs more automated and
autonomous. There is no prior work on security and safety
of self-driving labs. Hence, we discuss prior work on rule-
based/specification-based intrusion detection systems (IDS)
and safety monitoring in cyber-physical systems (CPS) en-
vironments that is closest to our work.

Rule-based/Specification-based IDS for CPS have been
applied in various domains, including medical systems, smart
grids, industrial control systems, unmanned aircraft systems
[32], and network protocols [31, 41]. Specialized IDSs [19,
33–35, 37] rely on either reference models, which describe
the expected behavior and properties of a system as defined
by domain experts, or observed behavior, which involves
capturing and analyzing real-world monitoring data to define
correct system behavior. RABIT’s rulebase uses both expert
knowledge of self-driving lab researchers (as its reference
model) and the robot arm dataset (as the observed behavior).

Mitchell and Chen [33] propose a rule-based IDS for med-
ical CPS, converting behavior rules to state machines. They
further extend their IDS to smart grids [35] and unmanned
air vehicles [34] with domain-specific rules. Unlike RABIT,
they do not monitor commands before execution, but evaluate
only post-conditions using sensor/actuator readings. Our work
is also different in that it formalizes rules for interactions
between heterogeneous devices in self-driving labs.

Mitchell and Chen [33–36] also use Monte Carlo simulation
for evaluating their IDS. Similarly, Pan et al. [37] test their IDS
using a testbed that emulates an electrical transmission system.
Testbeds and simulators are common when validating an IDS
[23, 25, 27, 28], as they provide flexibility in exploring various
parameters and conditions that cannot be tested in real-world
environment. However, simulations and testbeds can be rather
simplistic and may not fully account for the complexities of
real-world scenarios. Real-world validation is hence necessary.
We validate RABIT using simulation and testbed, as well as
in a production environment at the Hein Lab, which subjects
it to a multitude of realistic conditions.

Safety Monitoring in CPS has been explored for au-
tonomous systems. SOTER [21] is a robotics programming
framework that uses sensor data to monitor the robot and
its environment at runtime, and switches the robot to a safe
operating mode if a safety violation is detected. SOTER and
other similar frameworks [24, 29, 38] are programmed to
consider a single device, e.g., a single robot or an autonomous
system. They do not consider rules involving interactions
between multiple devices, such as the rule ‘Action device can
perform actions when a container is inside it’.

VII. CONCLUSION

We presented RABIT, a tool for detecting and preventing
unsafe behaviors in self-driving labs. We identified eleven
general-purpose rules that can be augmented with a few
custom rules to detect unsafe behavior when diverse devices
in self-driving lab interact in complex ways. We introduced
a three-stage deployment framework that allows researchers
to safely test both their experiment workflows and RABIT’s
ability to prevent errors before deploying experiments in
production. Our work is the first to consider rules spanning
multiple heterogeneous devices in a self-driving lab, to rely on
monitoring command sequences instead of sensor data, and to
monitor unsafe behavior in a self-driving lab.
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