
M. Appel, A. Gujarati and B. B. Brandenburg

A Byzantine Fault-Tolerant Key-Value Store for
Safety-Critical Distributed Real-Time Systems

Malte Appel, Arpan Gujarati and Björn B. Brandenburg

December 5, 2017
CERTS 2017

Work in progress

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Distributed Real-Time Systems

Susceptible to faults
◼ Electromagnetic interference
◼ Thermal effects
◼ ...

Care-O-bot 4
Robonaut 2

Concept using SLAMinDB

R. Gaillard, “Single event effects: Mechanisms and classification,” in Soft Errors in Modern Electronic Systems, 2011
K. Driscoll et al., “Byzantine fault tolerance, from theory to reality,” in SafeComp, 2003

[J. Badger et al., 2016]

[Fraunhofer IPA]

[D. Fourie et al., 2017]
◼ Bit-flips
◼ Crashes
◼ Madness

possible
consequences

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Common Mitigation Techniques

System Repair
◼ Requires accessible

system

Passive Replication
◼ Easy to implement
◼ Requires additional

hardware for replication
(typically ≥ 2 replicas)

Active Replication
◼ Complex replica

coordination consumes
more bandwidth

◼ Typically ≥ 3 replicas

Time for recoveryLong downtime Short downtime

Checkpointing
◼ Tolerates crash

(and restart) faults
◼ But not permantent

hardware faults

Fail-safe

Fail-operational

Assumptions for high-frequency systems

● Low latency
● No downtime
● Fail-operational

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Problem with Active Replication

 To tolerate Byzantine faults, replica coordination is
required

- Possibly very complex
- Difficult to analyze

 We want to analyze worst-case temporal behavior

- Aids certification process

Byzantine Fault
A fault presenting
different values to
different observers.

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Prior Work – BFT

◼ Plenty of Byzantine fault-tolerant protocols exist
◼ Chain-based
◼ Broadcast-based
◼ Probabilistic
◼ …

◼ No strict timing guarantees
◼ Often significant differences in performance

(faulty vs. fault-free)

What about fault tolerance for distributed real-time systems?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Prior Work – FT Distributed RTS

◼ Protocols for specific components exist...
◼ Byzantine fault-tolerant clock synchronization

[M. Malekpour, 2006]
◼ Omission fault-tolerant CAN bus
◼ [J. Rufino et al., 1998]

◼ … but also general architectures

Fault-tolerant real-time event service for CORBA
[H.-M. Huang and C. Gill, 2006]

◼ Middleware
◼ Multiple quality of service levels
◼ Fault model: Fail-stop

System-level Architecture for Failure
Evasion in Real-time applications

[K. Junsung et al., 2012]
◼ Mixed criticality tasks
◼ Case study: “Boss” autonomous

vehicle
◼ Fault model: Fail-stop

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Prior Work – FT Distributed RTS

◼ Protocols for specific components exist...
◼ Byzantine fault-tolerant clock synchronization

[M. Malekpour, 2006]
◼ Omission fault-tolerant CAN bus
◼ [J. Rufino et al., 1998]

◼ … but also general architectures

Fault-tolerant real-time event service for CORBA
[H.-M. Huang and C. Gill, 2006]

◼ Middleware
◼ Multiple quality of service levels
◼ Fault model: Fail-stop

System-level Architecture for Failure
Evasion in Real-time applications

[K. Junsung et al., 2012]
◼ Mixed criticality tasks
◼ Case study: “Boss” autonomous

vehicle
◼ Fault model: Fail-stop

How about Byzantine fault-
tolerant distributed RTS?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

This Work This Work
Key-value store
Provides:
◼ Byzantine fault tolerance
◼ Effortless replication
Supports:
◼ Timely termination

◼ Inspired by logical execution time
[T. A. Henziger et al., 2001]

◼ Strong timing semantics
◼ Configurability
◼ Analyzability

Byzantine Fault Tolerance
◼ Replication
◼ Coordination
◼ → Fail-operational

Real-time Application
◼ Strict timing requirements
◼ Low latency
◼ Scheduleability

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Outline

 System model
- Fault types
- Protocol description

 Implementation
- Overview
- Interfaces

 Initial experiments
 Discussion
 Next steps

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

System Model

Sensor
1

Sensor
2

Sensor
3

Multiple Sensors
◼ Same sensor type
◼ (Slightly) different outputs

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Replicated Controllers
◼ Multiple (noisy) sensor inputs
◼ Equal outputs expected

Physical Actuator
◼ Multiple equal inputs

Synchronized Clocks!

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fuse

A user-defined function to fuse multiple values
into one

 Different definitions possible
- Average
- Median
- Majority
- …

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fuse

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Noisy input: Median
Equal input: Majority

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fuse

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Noisy input: Median
Equal input: Majority

What could possibly go wrong?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fault Types – Crash

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Component crashes Replication provides tolerance
(in absence of other faults)

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Sensor
1

Fault Types – Consistent Wrong Value

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Faulty component sends wrong values
but values are consistent

Output of fuse is still equal
on all replicas
◼ Different, if compared to the

fault-free case...
◼ ...but the majority of correct

values dominates

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Sensor
1

Sensor
1 Controller 1Fuse Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

Controller 4Fuse

Fault Types – Inconsistent Values

Sensor
2

Sensor
3

ActuatorFuse

Faulty component sends wrong values
and values are inconsistent

Output of fuse differs on
all replicas
◼ Might lead to different

outputs (either directly or
over time)

 → Possibly no or incorrect
 majority

Requires
coordination

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Proposed Protocol
Sensor 1

Sensor 2

Controller 1

Controller 2

Sensor 3Simple broadcast + fuse
◼ For main operation
◼ Tolerates simple faults

Controller 1

Controller 4

Controller 3

Controller 2

Periodical “Synchronization”
◼ Comparatively high cost and latency

 → Only periodically executed
◼ Frequency depends on the application

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Implementation – Overview

Sensor
1

KVS

Controller 1

KVSFuse
KVS

ActuatorFuse

◼ All applications see one logical KVS
◼ Reality: One KVS per node
◼ Multiple applications

(e.g., Sensor 1 & Controller 1) can be situated
on the same node

◼ No manual networking or fuse, only read
and write

◼ Values are accessible on all correct nodes

write
w

ritere
ad

read

...

...

Sensor
1 KVS

Controller 1

Actuator

Logical view

Actual view

write

read/write

read

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Publishing time

Implementation – Write

write(k,v,t)

Key Value

KVS.write(“temp”,23.5,t1)

t0

broadcast

t1

New value is visible
to incoming read

New value is present
on all correct hosts

fuse
(simplified)

Latency of a single write can differ, because of...
◼ Network congestion
◼ Node utilization
◼ Faults
◼ …
 → unpredictable (and hard to coordinate)

◼ Publishing time provides point in time when a write is
guaranteed to have finished (or be ignored).

◼ Rationale: Writes that take too long are of no use
anyways

◼ Actual execution and coordination is decoupled from
logical execution ← Logical execution time paradigm

◼ t has to be lower bounded depending on the actual
system

Clear semantics allow
reasoning about time

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

publish time

Implementation – Read

read(k,t)

Key

KVS.read(“temp”,t0.5) Key Value Publishing
Time

temp 22.0 t0

temp 23.5 t1

temp 24.0 t2

Now

Local KVS

Newest value that is already published is returned
◼ t0 too old
◼ t2 not yet published

 → Value for t1 is returned

23.5

Reads are always handled by the local KVS
 → Faster response

t0 < t0.5 < t1 < t2 absolute timestamps

Earliest

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Implementation – Read
But what if there is no (fresh) value present?

● Query the value from another KVS
 → Might be faulty KVS KVS

k?

%&!#

● Query the value from all KVS
 → Risk of flooding the network if value is not

present in the system
KVS KVS

KVS

read(k,t)

%&!#

read(k,t) read(k,t)

read(k,t)

k?

k?
k?

k?
k?

k?

● Reply with error
 → If value was missed because of a transient network

partition (that is not present anymore), newer writes will be
received, so try again later

KVS
read(k,t)

Impossible to distinguish
(without querying everything)

“Sorry”

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Application period

Frequency (Hz)

M
ic

ro
se

co
n

d
s

Example
1000 writes in 2s (=500Hz)

99th percentile of write latencies:
1500 microseconds

Initial Experiments – Baseline

Setup
● 2 physical nodes
● Ethernet connection
● 1 application
● 4 KVS replicas
● 3-phase commit
● No faults

Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted

 → When is the write latency higher
than the period of the application?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Application period

Frequency (Hz)

M
ic

ro
se

co
n

d
s Expected latency

Initial Experiments – Baseline

Setup
● 2 physical nodes
● Ethernet connection
● 1 application
● 4 KVS replicas
● 3-phase commit
● No faults

Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted

 → When is the write latency higher
than the period of the application?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Application period
Write latency (99th %ile)

Frequency (Hz)

M
ic

ro
se

co
n

d
s Write takes longer

than one loop iteration

Initial Experiments – Baseline

Setup
● 2 physical nodes
● Ethernet connection
● 1 application
● 4 KVS replicas
● 3-phase commit
● No faults

Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted

 → When is the write latency higher
than the period of the application?

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Discussion
 Timed Byzantine fault-tolerant key-value

store
 Guarantees

 Timely Termination
(write t parameter)

 Usable with fewer replicas if a lower
level of fault tolerance is sufficient
 Byzantine: 3f+1
 Crash: f+1

 → Time semantics stay the same
 This allows for effortless replication

of an application

1.Spin up a new replica

2.Start the application without code
changes (same key / timestamp
usage)

 Validity

 Freshness
(read t parameter)

 Agreement

C
om

m
on

fo
r

B
FT

+

M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Next steps
 Implement remaining parts of the system

 Evaluation

- Fault injection experiments
 Inject faults into random parts of the implementation: Fuse, KVS,

synchronization, …
 … and into physical host memory, to see how the complete

system reacts.
 → Fault injection not limited to our binary!

- Performance

 More functionality? Thanks! Questions?

	Slide 1
	page2 (3)
	page3 (10)
	page4 (7)
	page5 (6)
	page6 (9)
	page6 (10)
	page7 (4)
	Slide 42
	page9 (6)
	page10 (3)
	page11 (3)
	page11 (4)
	page12 (3)
	page13 (4)
	page14 (6)
	page15 (3)
	page16 (9)
	page17 (17)
	page18 (11)
	page19 (10)
	page20 (9)
	page20 (10)
	page20 (12)
	page21 (15)
	page22 (10)

