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Distributed Real-Time Systems

Susceptible to faults
◼ Electromagnetic interference
◼ Thermal effects
◼ ...

Care-O-bot 4
Robonaut 2

Concept using SLAMinDB

R. Gaillard, “Single event effects: Mechanisms and classification,” in Soft Errors in Modern Electronic Systems, 2011
K. Driscoll et al., “Byzantine fault tolerance, from theory to reality,” in SafeComp, 2003

[J. Badger et al., 2016]

[Fraunhofer IPA]

[D. Fourie et al., 2017]
◼ Bit-flips
◼ Crashes
◼ Madness

possible
consequences
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Common Mitigation Techniques

System Repair
◼ Requires accessible 

system

Passive Replication
◼ Easy to implement
◼ Requires additional

hardware for replication
(typically ≥ 2 replicas)

Active Replication
◼ Complex replica

coordination consumes
more bandwidth

◼ Typically ≥ 3 replicas

Time for recoveryLong downtime Short downtime

Checkpointing
◼ Tolerates crash

(and restart) faults
◼ But not permantent 

hardware faults

Fail-safe

Fail-operational

Assumptions for high-frequency systems

● Low latency
● No downtime
● Fail-operational
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Problem with Active Replication

 To tolerate Byzantine faults, replica coordination is 
required

- Possibly very complex
- Difficult to analyze

 We want to analyze worst-case temporal behavior

- Aids certification process

Byzantine Fault
A fault presenting
different values to
different observers.
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Prior Work – BFT

◼ Plenty of Byzantine fault-tolerant protocols exist
◼ Chain-based
◼ Broadcast-based
◼ Probabilistic
◼ …

◼ No strict timing guarantees
◼ Often significant differences in performance

(faulty vs. fault-free)

What about fault tolerance for distributed real-time systems?
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Prior Work – FT Distributed RTS

◼ Protocols for specific components exist...
◼ Byzantine fault-tolerant clock synchronization

[M. Malekpour, 2006]
◼ Omission fault-tolerant CAN bus
◼ [J. Rufino et al., 1998]

◼ … but also general architectures

Fault-tolerant real-time event service for CORBA
[H.-M. Huang and C. Gill, 2006]

◼ Middleware
◼ Multiple quality of service levels
◼ Fault model: Fail-stop

System-level Architecture for Failure
Evasion in Real-time applications

[K. Junsung et al., 2012]
◼ Mixed criticality tasks
◼ Case study: “Boss” autonomous 

vehicle
◼ Fault model: Fail-stop
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Prior Work – FT Distributed RTS

◼ Protocols for specific components exist...
◼ Byzantine fault-tolerant clock synchronization

[M. Malekpour, 2006]
◼ Omission fault-tolerant CAN bus
◼ [J. Rufino et al., 1998]

◼ … but also general architectures

Fault-tolerant real-time event service for CORBA
[H.-M. Huang and C. Gill, 2006]

◼ Middleware
◼ Multiple quality of service levels
◼ Fault model: Fail-stop

System-level Architecture for Failure
Evasion in Real-time applications

[K. Junsung et al., 2012]
◼ Mixed criticality tasks
◼ Case study: “Boss” autonomous 

vehicle
◼ Fault model: Fail-stop

How about Byzantine fault-
tolerant distributed RTS?



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

This Work This Work
Key-value store
Provides:
◼ Byzantine fault tolerance
◼ Effortless replication
Supports:
◼ Timely termination

◼ Inspired by logical execution time
[T. A. Henziger et al., 2001]

◼ Strong timing semantics
◼ Configurability
◼ Analyzability

Byzantine Fault Tolerance
◼ Replication
◼ Coordination
◼  → Fail-operational

Real-time Application
◼ Strict timing requirements
◼ Low latency
◼ Scheduleability
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Outline

 System model
- Fault types
- Protocol description

 Implementation
- Overview
- Interfaces

 Initial experiments
 Discussion
 Next steps
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System Model

Sensor
1

Sensor
2

Sensor
3

Multiple Sensors
◼ Same sensor type
◼ (Slightly) different outputs

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Replicated Controllers
◼ Multiple (noisy) sensor inputs
◼ Equal outputs expected

Physical Actuator
◼ Multiple equal inputs

Synchronized Clocks!



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fuse

A user-defined function to fuse multiple values 
into one

 Different definitions possible
- Average
- Median
- Majority
- …
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Fuse

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Noisy input: Median
Equal input: Majority
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Fuse

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Noisy input: Median
Equal input: Majority

What could possibly go wrong?



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Fault Types – Crash

Sensor
1

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Component crashes Replication provides tolerance
(in absence of other faults)



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

Sensor
1

Fault Types – Consistent Wrong Value

Sensor
2

Sensor
3

Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

ActuatorFuse

Controller 4Fuse

Faulty component sends wrong values
but values are consistent

Output of fuse is still equal
on all replicas
◼ Different, if compared to the

fault-free case...
◼ ...but the majority of correct

values dominates
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Sensor
1

Sensor
1 Controller 1Fuse Controller 1Fuse

Controller 2Fuse

Controller 3Fuse

Controller 4Fuse

Fault Types – Inconsistent Values

Sensor
2

Sensor
3

ActuatorFuse

Faulty component sends wrong values
and values are inconsistent

Output of fuse differs on
all replicas
◼ Might lead to different

outputs (either directly or
over time)

 → Possibly no or incorrect
    majority

Requires
coordination
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Proposed Protocol
Sensor 1

Sensor 2

Controller 1

Controller 2

Sensor 3Simple broadcast + fuse
◼ For main operation
◼ Tolerates simple faults 

Controller 1

Controller 4

Controller 3

Controller 2

Periodical “Synchronization”
◼ Comparatively high cost and latency

 → Only periodically executed
◼ Frequency depends on the application
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Implementation – Overview

Sensor
1

KVS

Controller 1

KVSFuse
KVS

ActuatorFuse

◼ All applications see one logical KVS
◼ Reality: One KVS per node
◼ Multiple applications

(e.g., Sensor 1 & Controller 1) can be situated 
on the same node

◼ No manual networking or fuse, only read 
and write

◼ Values are accessible on all correct nodes

write
w

ritere
ad

read

...

...

Sensor
1 KVS

Controller 1

Actuator

Logical view

Actual view

write

read/write

read
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Publishing time

Implementation – Write

write(k,v,t)

Key Value

KVS.write(“temp”,23.5,t1)

t0

broadcast

t1

New value is visible
to incoming read

New value is present
on all correct hosts

fuse
(simplified)

Latency of a single write can differ, because of...
◼ Network congestion
◼ Node utilization
◼ Faults
◼ …
 → unpredictable (and hard to coordinate)

◼ Publishing time provides point in time when a write is 
guaranteed to have finished (or be ignored).

◼ Rationale: Writes that take too long are of no use 
anyways

◼ Actual execution and coordination is decoupled from 
logical execution  ← Logical execution time paradigm

◼ t has to be lower bounded depending on the actual 
system

Clear semantics allow 
reasoning about time



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

publish time

Implementation – Read

read(k,t)

Key

KVS.read(“temp”,t0.5) Key Value Publishing 
Time

temp 22.0 t0

temp 23.5 t1

temp 24.0 t2

Now

Local KVS

Newest value that is already published is returned
◼ t0 too old
◼ t2 not yet published

 → Value for t1 is returned

23.5

Reads are always handled by the local KVS
 → Faster response

t0 < t0.5 < t1 < t2  absolute timestamps

Earliest 
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Implementation – Read
But what if there is no (fresh) value present?

● Query the value from another KVS
 → Might be faulty KVS KVS

k?

%&!#

● Query the value from all KVS
 → Risk of flooding the network if value is not 

present in the system
KVS KVS

KVS

read(k,t)

%&!#

read(k,t) read(k,t)

read(k,t)

k?

k?
k?

k?
k?

k?

● Reply with error
 → If value was missed because of a transient network 

partition (that is not present anymore), newer writes will be 
received, so try again later

KVS
read(k,t)

Impossible to distinguish
(without querying everything)

“Sorry”
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Example
1000 writes in 2s (=500Hz)

99th percentile of write latencies:
1500 microseconds

Initial Experiments – Baseline 

Setup
● 2 physical nodes
● Ethernet connection
● 1 application
● 4 KVS replicas
● 3-phase commit
● No faults

Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted

 → When is the write latency higher
than the period of the application? 



M. Appel, A. Gujarati and B. B. BrandenburgMPI-SWS, Saarland University

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Application period

Frequency (Hz)

M
ic

ro
se

co
n

d
s Expected latency

Initial Experiments – Baseline 

Setup
● 2 physical nodes
● Ethernet connection
● 1 application
● 4 KVS replicas
● 3-phase commit
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Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted
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than the period of the application? 
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Measurements
● Performance baseline
● Write latency
● Application issues 1000 writes

for each frequency
● 99th percentile plotted

 → When is the write latency higher
than the period of the application? 
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Discussion
 Timed Byzantine fault-tolerant key-value 

store
 Guarantees

 Timely Termination
(write t parameter)

 Usable with fewer replicas if a lower 
level of fault tolerance is sufficient
 Byzantine: 3f+1
 Crash:  f+1

 → Time semantics stay the same
 This allows for effortless replication 

of an application

1.Spin up a new replica

2.Start the application without code 
changes (same key / timestamp 
usage)

 Validity

 Freshness
(read t parameter)

 Agreement

C
om

m
on

fo
r 

B
FT

+
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Next steps
 Implement remaining parts of the system

 Evaluation

- Fault injection experiments
 Inject faults into random parts of the implementation: Fuse, KVS, 

synchronization, …
 … and into physical host memory, to see how the complete

system reacts. 
   → Fault injection not limited to our binary!

- Performance

 More functionality? Thanks! Questions?
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