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Active replication is
often used because…

A. NCSs are
     time-sensitive

B. they contain high-
     frequency control loops

Safety-critical NCS must be fail-operational
i.e., continue functioning despite EMI-induced failures
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replication scheme?

Objective: meet the 
dependability requirements

Constraints: size, weight, 
power, and cost

Opportunity: controller inherently 
robust to occasional disturbances
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C2: (m,k) constraints not violated any time before the nth iteration

P (C2) = ?
Requires evaluating all possible 
combinations of failed and successful 
iterations among the first n − 1 iterations.

Computationally 
challenging

a-within-consecutive-b-out-of-c:F system 
‣ consists of c (c ≥ a) linearly ordered components,

‣ fails iff at least a (a ≤ b) components fail among any b 

consecutive components.

Sfakianakis et al. (1992)

modeled as

P (C2) >= Rabc(k �m+ 1, k, n� 1)
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✓
k � 1

k �m

◆
F (k�m+1)(1� F )m�1Rabc(k �m+ 1, k, n� 1)

Computing gLB(n) for a given < m, k, n, F > is easy 

‣ n varies from 0 to 

‣ m, k, F are constants for a given system

1

Numeric, but sound, method to lower-bound the MTTF

}

But what about n?

Z nT

(n�1)T
f(t) � gLB(n) MTTF =

Z 1

0
tf(t) dt
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exponentially 
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di+1 - di = 1

di+1 - di = 1053 dL ~ 1057

Step size of 10y between 
points [10y+1, 10y+2]
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Approximating MTTF using simulation

Biased-coin toss experiment

Tails with probability F 
‣ system iteration is incorrect

Heads with probability 1 - F 
‣ system iteration is correct

Repeat coin toss until the 
(m,k) constraint is violated

Each trial

MTTFsim = Average tosses per trial x control period
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F = 10-2 

F = 10-3 

F = 10-4 

F = 10-2 

F = 10-3 

F = 10-4 

F = 10-2 

F = 10-3 

F = 10-4 

MTTFLB is always less than MTTFsim



Comparing MTTFLB and MTTFsim

(m, k) = (3, 5) (m, k) = (8, 10) (m, k) = (98, 100)

F = 10-2 

F = 10-3 

F = 10-4 

F = 10-2 

F = 10-3 

F = 10-4 

F = 10-2 

F = 10-3 

F = 10-4 

MTTFLB is always less than MTTFsim
In all cases, MTTFLB and MTTFsim are 

roughly of the same orders of magnitude



Comparing time to compute MTTFLB and MTTFsim

F



Comparing time to compute MTTFLB and MTTFsim

F

MTTFLB can be computed 
significantly faster than MTTFsim 

for low failure probabilities



Summary
At least m iterations, out 
of any k consecutive loop 
iterations must be correct

(3) Reliability Analysis:
Upper-bound the likelihood 

that the control system 
“fails beyond recovery”

Control loop iteration 
deviates from its 
failure-free execution

(2) Probabilistic Analysis:
Characterize how often a single 

control loop iteration “fails”

Bit-flips in host 
memory buffers

Bit-flips during 
network 
transmission

Crash & reboot

Retransmissions

(1) Fault Modeling: Transient faults 
modeled using Poisson distribution, 
empirically-derived peak EMI rates

Message 
corruptions



Summary

Given a bound F on the 
iteration failure probability, 
also satisfying the IID property

Safe lower bound on the 
system MTTF for systems 
with (m, k) constraints 

At least m iterations, out 
of any k consecutive loop 
iterations must be correct

(3) Reliability Analysis:
Upper-bound the likelihood 

that the control system 
“fails beyond recovery”

Control loop iteration 
deviates from its 
failure-free execution

(2) Probabilistic Analysis:
Characterize how often a single 

control loop iteration “fails”

Bit-flips in host 
memory buffers

Bit-flips during 
network 
transmission

Crash & reboot

Retransmissions

(1) Fault Modeling: Transient faults 
modeled using Poisson distribution, 
empirically-derived peak EMI rates

Message 
corruptions



Thank you. Questions?



Backup

dD ~ 1057

gLB(n) exponentially decreasing

gLB(n) decreasing 
steeply


