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Abstract—In a controller area network (CAN), electromagnetic
interference (EMI) can result in message corruptions during
transmission. The CAN protocol thus checks each message
for corruption (using a checksum) and automatically schedules
an erroneous message for retransmission. Retransmissions help
tolerate EMI-induced errors with very high probability, but
since EMI is stochastic in nature, they can affect the timing
properties of the system in unpredictable ways. This work is
about effectively quantifying the impact of retransmissions on the
schedulability of real-time systems. Prior work focused on coarse-
grained worst-case response-time analysis (RTA) of periodic or
sporadic CAN message streams in the presence of retransmissions.
For example, in case of periodic streams, prior analyses help
upper-bound the maximum response time that any message
belonging to a message stream might incur in the presence of a
specific number of retransmissions. In this work, we present a
fine-grained approach to analyze CAN message response times
in the presence of retransmissions. The proposed analysis is
based on the exploration of schedule-abstraction graphs, a novel
abstraction for concisely capturing all possible schedules of CAN
messages. Therefore, it enables upper-bounding the response
times for each individual CAN message, and is not restricted
to only periodic or sporadic message streams. We demonstrate
the benefits of a message-specific analysis with a case study based
on a simple mobile robot message set, and also discuss future
opportunities enabled by such an analysis.

I. INTRODUCTION

Embedded systems often need to operate in harsh environ-
ments, e.g., automotive embedded systems are surrounded by
spark plugs and electric motors, industrial embedded systems
in many cases are deployed in close vicinity to high-power
machinery, and autonomous robots may need to operate in
radiation-prone environments [1]. As a result, such embedded
systems are susceptible to electromagnetic interference (EMI)
and must be designed to withstand its effects [2].

In the context of real-time networked systems, EMI may
result in frequent message corruptions on the network. To
mitigate the effects of such corruptions, network stacks
typically detect and retransmit the corrupted messages. For
example, in a Controller Area Network (CAN), CAN controllers
automatically queue messages for retransmission if any host
signals a transmission error [3]. However, retransmissions may
sometimes have a negative effect on the system reliability. Since
EMI is stochastic in nature, retransmissions affect the timing
behavior of the system in unpredictable ways, and may even-
tually compromise its functional safety due to deadline misses.
This work is about effectively quantifying the effect of retrans-
missions on schedulability of CAN-based real-time systems.

Prior work in this regard [4, 5, 6, 7, 8, 9, 10] has focused
on coarse-grained worst-case response-time analysis (RTA) of
periodic and sporadic CAN message streams in the presence
of retransmissions. For example, in case of periodic streams,
prior analyses help upper-bound the maximum response time
that any message belonging to a message stream might incur
in the presence of a specific number of retransmissions.

The aforementioned analyses primarily rely on the classical
technique of computing response times through fixed-point
analysis of an iterated function [11]. As a result, although
effective in detemining if a message set ever misses any
deadline, they are often too coarse-grained for many use cases.
For example, in case of weakly-hard systems [12] that can
tolerate a few deadline violations (such as real-time control
systems), a separate response-time analysis is required for
each message in the message stream; as shown by Bernat
et al. [12, 13], this is non-trivial with a fixed-point analysis.
Even in the case of reliability analysis, using message stream-
specific analyses to upper-bound the probability of a message
transmission failure results in extremely pessimistic bounds on
system realibiltiy [14].

Empirical approaches, e.g., [15, 16], provide detailed profiles
of message-specific response times, but are not provably safe
and thus problematic in the context of safety-critical systems.

In this work, we present a new approach based on schedule-
abstraction graphs [17] to analyse both best-case and worst-case
response times of individual messages belonging to each mes-
sage stream in the workload. Schedule-abstraction graphs [17]
are a recently proposed abstraction for concisely capturing all
possible schedules of CAN messages. Therefore, they enable
upper-bounding the response time of each individual CAN
message with both release jitters and offsets, and are not
restricted to only periodic or sporadic message streams.

To the best of our knowledge, this is the first instance of an
analysis for CAN messages that explores all possible schedules
while taking retransmissions into account.

The rest of paper is organized as follows. We start with
an overview of prior work on schedule-abstraction graphs
that is necessary to understand the proposed analysis (§II),
and then explain in detail our retransmissions-aware analysis
for CAN messages (§III). We then demonstrate the benefits
of the proposed message-specific analysis with a case study
based on a simple mobile robot message set and discuss some
interesting open problems (§IV). Finally, we conclude with a
brief discussion of future work (§V).



II. SCHEDULE-ABSTRACTION GRAPHS

The CAN protocol schedules message transmissions in
the order of their fixed priorities [3]. Thus, schedulability
analysis of CAN messages can be reduced to the problem of
schedulability analysis of fixed-priority non-preemptive jobs
on a uniprocessor platform.

In particular, we base our analysis on a recently proposed
exact schedulabiltiy analysis of non-preemptive fixed-priority
jobs [17], which uses schedule-abstraction graphs for efficiency.
Traditionally, exact schedulability analyses have been devel-
oped for preemptive jobs using state exploration techniques
based on model checking, timed automata, or linear-hybrid
automata [18, 19, 20, 21]. These techniques do not apply to
non-preemptive jobs and their sclability is limited. In contrast,
the schedule-abstraction graph model, along with an effective
merging strategy [17], allows for a more efficient representation
and exploration of all possible uniprocessor schedules. In the
following, we give a brief overview of this analysis.

Suppose a finite set of jobs J to be scheduled on
a uniprocessor based on their priorities. Each job Ji =
([rmin

i , rmax
i ], [Cmin

i , Cmax
i ], di, pi) can be released at any

time ri ∈ [rmin
i , rmax

i ], has a transmission time of Cj ∈
[Cmin

i , Cmax
i ], an absolute deadline di, and a fixed priority pi

(a numerically lower value denotes a higher priority).
The schedule-abstraction graph for a job set J is a directed

acyclic graph G = (V,E) consisting of vertices V denoting the
system states and edges E denoting job executions. Each edge
(vp, vq, Ji) is directed from source vertex vp to destination
vertex vq and is labeled with a job Ji ∈ J , impliying that
job Ji is executed between system states vp and vq, i.e., it
is dispatched next after vp or that it succeeds vp. A system
state vp = [Amin

p , Amax
p ] represents an interval during which

the processor is possibly available and at the end of which
the processor is certainly available. The graph is rooted at the
initial state v1 = [0, 0] denoting an idle processor. A possible
schedule of any job set J P ⊆ J is modeled as a path P from
the initial state v1 to any state vp such that the set of labels
of edges on this path corresponds to J P .

Using the aforementioned graph-based abstraction for sched-
ules, and given a particular scheduling policy, the BCRTs and
the WCRTs of the jobs are determined through an iterative
algorithm consisting of an expansion phase and a merging
phase. In particular, during each iteration, a path P ending
at vertex vp is first expanded by deriving all jobs that can
potentially be dispatched next after vp through at least one
valid execution scenario, i.e., through some valid assignment
of release times and execition times. Afterwards, if any two
paths P1 and P2 share the same set of jobs (i.e., J P1 = J P2 ),
their terminal vertices are compared. If the respective terminal
vertices, say, vp and vq correspond to intersecting processor-
availability intervals (i.e., vp ∩ vq 6= ∅), then they are merged
together to create a new state vpq whose processor-availability
interval is the union of the two (i.e., vpq = vp ∪ vq). In the
merged state, paths P1 and P2 both terminate at vertex vpq.
The algorithm terminates when each path corresponds to J .

4, 12

𝑣1

0,0

𝐽1 3, 10

𝐽1 6, 11

𝐽2 4, 12

3, 10

3, 6

𝐽3 12, 14

12, 14

𝑣5

𝐽2 3, 6

𝐽1 = 0,5 , 3, 5 , 10, 1

𝑣2

𝑣3

𝑣4

𝐽2 = 2, 8 , 1, 2 , 15, 2

𝐽3 = 2, 8 , 2, 4 , 15, 3

0 5

2 8

10 11 15

legends

𝑟𝑖
𝑚𝑖𝑛 𝑟𝑖

𝑚𝑎𝑥 𝑑𝑖

Fig. 1. A schedule-abstraction graph for three jobs J = {J1, J2, J3}. An
interval after a job on an edge denotes the earliest and latest finish time of the
job on that edge and an interval below a vertex represents when the processor
becomes possibly and certainly ready in that state.

While constructing the graph, the algorithm stores the
earliest and latest finish time of a job Ji for each edge
e = (vp, vq, Ji) ∈ P , where Ji is dispatched next after vp.
Hence, upon the termination of the algorithm, the BCRT and
the WCRT of job Ji is trivially obtained by finding its minimum
and maximum finish times over all paths in G.

Example. Suppose that a given job set J consists of three
jobs J1 = ([0, 5], [3, 5], 10, 1), J2 = ([2, 8], [1, 2], 15, 2), and
J3 = ([2, 8], [2, 4], 15, 3). The schedule-abstraction graph for
this job set is illustrated in Fig. 1. Due to the release jitter of
J1 and J2, it is possible for either of them to be scheduled
first, e.g., job J2 is scheduled first if J2 is released at time 3
and J1 is released at time 4. Both possibilities are modeled in
the graph by two outgoing edges labeled J1 and J2 incident
to the initial state.

For each edge, an earliest and a latest finish time of the job
that is scheduled first is calculated. These values are determined
by taking into account the time at which a higher-priority
job will certainly be released, the candidate job’s release
jitter interval and execution time variation, and the processor-
availability interval of the source state of the edge. For example,
when J2 succeeds v1 (and creates state v3), its earliest start
time is 2 and its latest start time is 4 since at time 5, a higher-
priority job, i.e., J1, will be certainly released and hence J2
cannot be the highest-priority pending job from time 5 onward.
Thus, the earliest and latest finish times of J2 when it succeeds
state v1 are 2+1 = 3 and 4+2 = 6, respectively. On the other
hand, if J1 succeeds v1, its earliest and latest finish times are
3 and 10 since its earliest and latest release times are 0 and
5, respectively, and its shortest and longest execution times
are 3 and 5, respectively. When J2 is dispatched after J1, i.e.,
it succeeds state v3, its earliest and latest start times will be
3 and 10, since the earliest and latest times, respectively, at
which the processor becomes available after executing J1 are 3
and 10. Using these values, the earliest and latest finish times
of J2 when it succeeds v3 are 4 and 12, respectively.

Since both paths 〈J1, J2〉 and 〈J2, J1〉 share the same set of
jobs and their intervals intersects, i.e., [4, 12] ∩ [6, 10] 6= ∅,
their terminal states are merged to obtain state v4. Since
J3 is the only pending job at state v4, the graph is trivially
extended with edge (v4, v5, J3). From this graph, the response



time of J1 along the path 〈v1, v2, v4, v5〉 is R1 ∈ [3, 10],
whereas its response time along the path 〈v1, v3, v4, v5〉 is
R1 ∈ [6, 11]. Thus, J1’s BCRT and WCRT is min(3, 6) = 3
and max(10, 11) = 11, respectively. Jobs J2 and J3’s response-
time bounds can be computed similarly.

A detailed proof of correctness of the analysis can be found
in [17]. Further, the paper provides a thorough discussion on
how to use the proposed schedulability analysis for periodic
tasks with constrained deadlines and/or release offsets.

III. RETRANSMISSIONS-AWARE ANALYSIS

Using the schedule-abstraction graph-based analysis dis-
cussed in §II as a black box, we next propose a technique to
analyze CAN message response times while accounting for
fault-induced retransmissions.

Consider a finite set of CAN messages M where each mes-
sage Mi ∈M can be released at any time ri ∈ [rmin

i , rmax
i ],

has a transmission time of Cj ∈ [Cmin
i , Cmax

i ], an absolute
deadline di, and a fixed priority pi ≥ 1. Release time variation
for CAN messages is common due to scheduling delays,
queuing delays, buffering, etc. Transmission time variation
occurs due to changes in data values or bit-stuffing1 and is
typically small. For an 8-byte data frame, for example, the
frame size can vary between 108 and 126 bits.

Without retransmissions, an exact value of the WCRTs can
be trivially estimated using schedule-abstraction graphs since
J , M. With retransmissions though, deriving an exact
WCRT or even an upper bound on the exact WCRT of a
message is challenging since errors that cause retransmissions
happen in a non-deterministic way. In the following, we propose
an analysis to derive an upper bound on the exact WCRT of
any message Mi ∈M given that up to f retransmissions may
happen during the time the message set is transmitted over the
network. We denote the exact value of this retransmissions-
aware WCRT of each message Mi as Ri(f).2

We assume that each host transmitting messages on CAN
has enough buffer to store all pending messages, including the
messages that are scheduled for retransmission.

Analysis. A schedule of M with f retransmissions means
that a total of n + f messages are actually transmitted over
CAN, including n successful transmissions and f erroneous
transmissions. Thus, to use schedule-abstraction graphs, we
consider a revised message set M′ = M ∪ Mf where
Mf = {Mn+1,Mn+2, . . . ,Mn+f}. Namely, each message
in M represents a successful transmission and each message
in Mf represents an erroneous transmission over the network.

Messages in Mf are defined as follows. Since mes-
sages can be corrupted at any time in a non-deterministic
way, we model the release of each message in Mf

1CAN controller inserts a bit of opposite polarity after five consecutive bits
of the same polarity while transmitting any data on the network. This practice
is called bit stuffing, and is necessary due to the non-return to zero (NRZ)
coding used with CAN. The stuffed data frames are destuffed by the receiver.

2Even though f is non-deterministic in practice, it could be estimated
through an empirical analysis of EMI on the CAN bus under different types
of operational environments.

using the release jitter interval [rmin, dmax], where
rmin , min{rmin

i | Mi ∈M} denotes the earliest possi-
ble release event and dmin , max{di | Mi ∈M} de-
notes the latest possible deadline in message set M.
Since any message in M can be corrupted, the trans-
mission times of messages in Mf are modeled as
ranging from Cmin , min{Cmin

i | Mi ∈M}+ ε up to
Cmax , max{Cmax

i | Mi ∈M}+ ε. The error overhead
ε denotes the time corresponding to the transmission of an
error frame on the network, which happens immediately after
the transmission of an erroneous message. We also set the
priority of each erroneous message to the highest priority, i.e.,
zero, to model the corruption of the highest-priority message
in the worst case (recall that ∀Mi ∈M, pi ≥ 1). The deadline
of each erroneous message is irrelevant and set to ∞.

To summarize, the kth erroneous message Mn+k is defined
as Mn+k ,

(
[rmin, dmax], [Cmin, Cmax],∞, 0

)
. Thanks

to this definition, an erroneous message (i) can be released
anytime in the window of interest, i.e., [rmin, dmax], and (ii)
has a priority higher than any message in M and hence can
be transmitted before any message in M. As a result, the
transmission of erroneous messages can affect the WCRT of
any successfully transmitted message. Invoking the schedule-
abstraction graph-based analysis [17] with message set M′

thus yields a safe upper bound on the WCRT of messages in
M, given that they may be affected by up to f retransmissions.
Note that we are not interested in the WCRT of the erroneous
messages in Mf , but only on their impact on the response
times of correctly transmitted messages.

We next explain the schedule-abstraction graph generated for
a set of CAN messages, including the erroneous messages that
we model for a black-box analysis, using a simple example.
Example. Suppose that message set M consists of two mes-
sages M1 = ([0, 5], [3, 5], 14, 1) and M2 = ([6, 6], [1, 2], 30, 2).
The schedule-abstraction graph for f = 2 is illustrated in
Fig. 2. M3 and M4 denote the two erroneous messages in
this case. The analysis keeps track of the largest observed
value of WCRT of each correct message in all paths. In this
example, R1(2) = 15 and R2(2) = 22, which means that
M1 misses its deadline at time 14. This happens when M1

is transmitted after two erroneous trials, shown by the two
paths 〈M3,M4,M1,M2〉 and 〈M4,M3,M1,M2〉. A scenario
in which neither M1 nor M2 is transmitted erroneously is
represented by the path 〈M1,M2,M3,M4〉. In this path, the
response times of M1 and M2 are not affected by any
retransmission. Note that message M1 is always certainly
released before message M2 is released. Since M1 has a higher
priority than M2, message M2 can never be transmitted as
long as M1 has not been transmitted.

IV. CASE STUDY

In this section, we demonstrate the benefits of the proposed
fine-grained message-specific analysis with a case study based
on a simple mobile robot message set. In particular, we show
that the proposed analysis helps to (i) account for weakly-hard
timing constraints, and to (ii) assign message offsets such that
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Fig. 2. A schedule-abstraction graph for f = 2 and M = {M1,M2}, where
M1 = ([0, 5], [3, 5], 14, 1) and M2 = ([6, 6], [1, 2], 30, 2). Dashed lines
denote erroneous transmissions.

the overall distribution of the WCRTs is improved. Later, we
discuss some interesting open problems for future work.

The employed mobile robot benchmark [6] is designed
for a CAN bus with a bit-transmission rate of 256 Kbps.
It consists of six periodic message streams, denoted by
M = {M1,M2, . . . ,M6} as listed in Table I.

We convert these periodic message streams to a finite set
of messages (as required by the analysis in §III) as follows.
Let Ti denote the periods of the respective message streams,
and H = lcm(T1, T2, . . . , T6) denote their hyperperiod, where
lcm denotes the least common multiple. Starting with M = ∅,
for each message that belongs to message stream M i, say,
the jth message, and that is released during the hyperperiod,
we add a new message Mi,j to M. Each message Mi,j has
a release interval [(j − 1)Ti, (j − 1)Ti + δ], where δ denotes
the maximum release jitter of M i. The best-case transmission
time for each message Mi,j is Cmin

i,j = 72, corresponding to
the transmission time of the minimum-sized (one byte) packet,
and the worst-case transmission time for each message Mi,j

is assigned as per the “length” column in Table I.
For our experiments, we considered δ = 10µs and f = 1,

i.e., each message is affected by up to one retransmission
in a hyperperiod, or in other words, at most one message is
erroneously transmitted. In practice, δ is upper-bounded through
a careful analysis of the system processes that generate the
messages to be transmitted, and f can be estimated with high
confidence based on the peak rate of EMI, which in turn
is known from empirical measurements and/or environmen-
tal modeling. All experimental results are illustrated in Fig. 3.

As mentioned in §I, the proposed analysis allows a detailed
study of the WCRTs of each message stream in the workload.
This enables the analysis of other higher-level properties and
guarantees, for instance such as whether any message stream
incurs more than three consecutive deadline misses (i.e., weakly-
hard constraints [12]), or opportunities for a reduction in
response-time jitter. We next discuss some relevant examples
that demonstrate the use of the proposed analysis in these ways
in the context of the case study.

Understanding the response-time distributions. Figs. 3(a)-
3(e) show the WCRTs of the first 15 messages belonging to
message streams M1-M5, respectively. For message stream
M6, only a single message is transmitted during the hyperpe-

TABLE I
MOBILE ROBOT MESSAGE SET FROM [6]

Benchmark id priority length(µs) period(µs) deadline(µs)
MotorCtrl M1 1 288 2000 2000
Wheel1 M2 2 328 4000 4000
Wheel2 M3 3 328 4000 4000
RadioIn M4 4 528 8000 8000
Proximity M5 5 248 12000 12000
Logging M6 6 528 240000 12000

riod with a WCRT of R6,1(1) = 3187µs. We observe that the
WCRTs for each message stream follow a repeating pattern
depending on the relation between the different message periods.
For example, as shown in Fig. 3(g), messages belonging to
message stream M5 have three different types of WCRTs, and
from the second message onward, the WCRTs alternate. In
this case, M5,1 has the largest WCRT compared to subsequent
messages of M5 because its arrival time coincides with that
of M1,1,M2,1, . . . ,M6,1. Since the release jitter δ = 10µs
for each message, any of these messages can be scheduled
before M5,1. However, M5,2 arrives at time 12000µs, when
M4,1, M4,2, and M6,1 are no longer pending and hence their
transmission does not affect the WCRT of M5,2. Consequently,
after M5,1’s transmission, the WCRT of each M5,j varies
alternately depending on whether a message instance of M4

or M6 arrives at the same time as M5,j . It is worth noting
that in the presence of jitter, both lower- and higher-priority
messages may interfere with a message instance.

Verifying weakly-hard constraints. Weakly-hard constraints
are usually represented in the form of (m, k) constraints, i.e., at
least m message instances must arrive before their deadline in
any consecutive sequence of k message instances [12]. Hence, a
fine-grained knowledge about the WCRT of message instances
is required to evaluate whether or not a message stream
conforms a weakly-hard timing constraint. Since our analysis
derives the WCRT of each message during a hyperperiod,
verifying an (m, k) constraint for a message stream M i is
equivalent to counting the number of deadline misses in each
window of k messages and ensuring that at least m messages
within that window are transmitted before their deadlines.

Reducing WCRTs using offset assignment. Assigning offsets
allows a system designer to avoid creating a large amount of
interference (i.e., long busy windows) and hence improves
schedulability [22]. This, however, requires having a fine-
grained WCRT analysis per message instance in order to under-
stand which individual messages suffer from large interference
and how message streams should be aligned using initial offsets
so that their response times are reduced.

For example, the WCRT of messages in the mobile robot
message set (Table I) can be reduced through offset assignment
as follows. We use O1 = 0µs, O2 = 0µs, O3 = 2000µs, O4 =
0µs, O5 = 2000µs, and O6 = 4700µs as the respective offsets.
Since every period in M is an integer multiple of T1 = 2000µs,
by aligning other message streams with either the odd or the
even message instances of M1, the interference among message
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Fig. 3. WCRT of jobs for the benchmark message set in Table I: Experimental results for task sets with zero, small, and large jitter. (a, b, c, d, e) WCRT of
the first 15 jobs of messages M1 to M5, (f) WCRT of each individual message in one hyperperiod sorted in a non-decreasing order, (g) WCRT of all jobs of
message M5 in a synchronous-release scenario, and (h) cumulative distribution function of message instances for each WCRT scale from 900 to 3200.

streams can be reduced (see Fig. 3). In particular, using the
chosen offsets, the WCRT of message streams M i, i ≥ 2 is
reduced efficiently while only a few instances of M1 experience
an increase in their WCRT. Note that assigning large offsets
to message streams may result in carry-in workload for the
next hyperperiod which, in turn, increases the length of the
observation window that must be analyzed [17, 23]. We are
hence interested in offset assignments that do not push extra
workload to the next hyperperiod.

Fig. 3(f) shows the response time of all individual messages
over a hyperperiod. To make the trends clear and visible, we
sorted the WCRTs in ascending order. As it can be seen,
our offset assignment resulted in a more balanced WCRT
distribution over the hyperperiod. In particular, it reduced the
tail of the distribution of WCRTs (see Fig. 3(h)).

Discussion. As shown before, a fine-grained response-time
analysis, which takes into consideration the WCRT of individual
messages rather than a message stream, allows verifying
more general forms of timing constraints, e.g., weakly-hard
constraints. It also provides directives on how to find offsets
such that a more balanced distribution of WCRT is attained
for a message stream. In the following, we discuss some open
problems that focus on a combination of practical constraints
in designing robust and reliable CAN-based systems.

CAN controllers usually have a buffer to store pending
messages, including messages that are released but not yet

send and messages that have been transmitted erroneously and
must be retransmitted. The WCRT of a message instance is
an indicator of the lifetime of that individual message in the
CAN controller buffer of the node it belongs to. Thus, taking
into account the arrival time and WCRT of message instances,
it is possible to derive the buffer size of the CAN controller
on each node. This leads to the first interesting open problem.

Open Problem 1. Given a schedulable message set M and
the number of retransmissions f affecting each message, derive
an upper bound on the required buffer size of each CAN node.

Open Problem 2. Given a fixed buffer size B for each CAN
controller, a message set M, and number of retransmissions
f , derive the WCRT of each message while accounting for
messages dropped due to buffer overflows.

Open Problem 2 can be extended to systems with weakly-
hard constraints in order to evaluate the schedulability of a
message set using an (m, k) constraint.

Another direction is to devise a more accurate, ideally exact,
response-time analysis for message sets with retransmission,
where instead of an upper bound on the WCRT, an exact WCRT
of each message is obtained. In our current approach, each
erroneous transmission is modeled as a non-deterministic event
(erroneous message) which can happen before any message
and its worst-case transmission time is as large as the largest



message in M. This approach, however, contains two main
sources of pessimism: (i) it pessimistically increases the re-
sponse time of (high-priority) messages with short transmission
time since the transmission time of the erroneous message is
set to be as large as Cmax, which might be determined by
a low-priority message, and (ii) it includes scenarios where
more than one retransmission of a lower-priority message can
possibly happen before a pending higher-priority message is
transmitted. The latter situation happens because we assign
the highest priority to the erroneous messages. However, in
reality, a retransmission can only happen in the order of priority
of pending messages. Namely, a higher-priority message can
be blocked by at most one retransmission of a lower-priority
message. To remove this pessimism, failed transmissions must
be incorporated into the generation of the schedule-abstraction
graph such that a failed transmission inherits the properties of
the last message dispatched on a path. This requires defining
new rules for expanding and merging paths in the graph and
hence requires its own proof of correctness afterwards, which
we leave to future work.

V. CONCLUSION

The paper provides a sufficient schedulability analysis for a
set of messages transferred over a CAN bus in the presence
of message retransmission due to transient errors caused by
electromagnetic interference. The analysis derives the worst-
case response time (WCRT) of each individual message as a
function of the maximum number of bit-flips (errors) that can
happen within the given window of time. The paper explains
how to use a state-of-the-art exact schedulability analysis of
a set of non-preemptive jobs upon a uniprocessor platform in
order to obtain an upper-bound on the WCRT of the messages
in the presence of transient errors. Since the analysis is message-
specific, it opens up an array of opportunities as discussed
in §IV. In particular, it would be interesting to derive an
exact retransmission-aware response-time analysis by directly
modifying the way the schedule-abstraction graph is explored.
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