
The Fault in Our Data Stars: Studying Mitigation
Techniques against Faulty Training Data in Machine

Learning Applications
Abraham Chan, Arpan Gujarati, Karthik Pattabiraman, Sathish Gopalakrishnan

The University of British Columbia (UBC), Vancouver, BC, Canada
Email: abrahamc@ece.ubc.ca, arpanbg@cs.ubc.ca, {karthikp, sathish}@ece.ubc.ca

Abstract—Machine learning (ML) has been adopted in many
safety-critical applications like automated driving and medical
diagnosis. Incorrect decisions by ML models can lead to catas-
trophic consequences, such as vehicle crashes and inappropriate
medical procedures, thereby endangering our lives. The correct
behaviour of a ML model is contingent upon the availability
of well-labelled training data. However, obtaining large and
high-quality training datasets for safety-critical applications is
difficult, often resulting in the use of faulty training data.

We compare the efficacy of five different error mitigation
techniques, derived from a survey of more than 200 related
articles, which are designed to tolerate noisy/faulty training data.
We experimentally find that the error mitigation capabilities of
these techniques vary across datasets, ML models, and different
kinds of faults. We further find that ensemble learning offers
the highest resilience among all the techniques across different
configurations, followed by label smoothing.

Index Terms—Error resilience, Machine learning, Training

I. INTRODUCTION

Machine learning (ML) applications are actively deployed in
many safety-critical domains including medical diagnosis [1]
and autonomous vehicles (AVs) [2]. For example, deep neural
networks (DNNs) have been developed and trained to automat-
ically and efficiently screen patients with COVID-19 based on
chest X-ray images [3]. Incorrect inferences could cause either
unnecessary medical procedures or a neglect of care, which
could have serious health consequences to patients [4, 5].
Similarly, incorrect inferences by an AV could cause collisions,
endangering our lives and property.

Many of these applications use supervised learning, where
labelled examples are collected a priori for training the
ML components. The training data, thus, has a significant
influence on the correctness of ML applications (we focus on
classification applications). We examine different approaches
to mitigating the effects of these faults in training data sets.
Our goal is to help developers choose the best technique for
protecting their ML models from training data faults.

A. Motivation

To generate large amounts of training data, which is required
to achieve high classification accuracy, ML developers widely
rely on crowd-sourcing and automatic labelling techniques [6].
In specialized domains such as medical sciences, this can
be a monumental challenge because of logistical and legal
barriers [7]. Furthermore, it is expensive to have multiple

experts manually validate every image-label pair in a large
training dataset. Hence, despite best efforts, training data may
be incomplete or contain mislabelled entries.

For example, ChestX-ray14 [8] is a large-scale medical
dataset with more than 100, 000 images, spanning 14 types
of diseases. Tang et al. [9] found that 20% of the images in a
random sample of this dataset were mislabelled. The popular
open source Udacity Dataset 2, used for training AVs, has
33% of the images that are either mislabelled or are missing
labels [10]. Even large open datasets like ImageNet [11] have
been found to contain mislabelled data [12].

There have been many techniques proposed to mitigate,
or compensate for, faulty training data in ML models [13].
These techniques are, however, not directly comparable as
they often use different metrics and datasets. Moreover, many
of these techniques require considerable tuning or adaptation
to get them to work on ML architectures and datasets. On
the other hand, there exist techniques [14, 15] that defend
against data poisoning attacks, where the attacker purposely
crafts training data faults so that specific input targets are
misclassified. These defense techniques also try to identify and
clean mislabelled data during training. However, they often
use pattern matching on deep features to identify maliciously
mislabelled data, which is ineffective against more general
faults in the training data. We seek to answer the following
question that remains open (to the best of our knowledge):
How to select a technique to best protect ML models against
the effects of faulty training data? Note that we do not study
techniques against data poisoning attacks in this paper.

B. Contributions

We conducted a survey of about 200 research papers
published between 2017 and 2021 on protecting ML models
from faulty training data. We shortlisted 50 papers with well-
documented techniques. We divided these into five training-
data fault mitigation (TDFM) approaches: (1) label smooth-
ing [16], (2) label correction [17], (3) robust loss [18], (4)
knowledge distillation [19], and (5) ensembles [20]. For each
approach, we selected a representative implementation that
is generic across datasets or model architectures. Finally, we
injected training data faults, and compare these five approaches
with each other in terms of their ability to tolerate the training
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data faults injected by us. Notably, we used the same metrics
and datasets, so as to obtain an “apples-to-apples” comparison.

We consider three types of faults in training data [21],
1) mislabelling faults - data is erroneously labelled,
2) repetition faults - input-output pairs are repeated,
3) removal faults - a fraction of data may be deleted.

We choose these three fault types in part because they were
found to be the most significant fault types in a well-used
music dataset, GTZAN [22]. These types of fault are also
rampant in datasets covering safety-critical domains [23].

We evaluate the effectiveness of the five TDFM approaches
(identified from our survey) using seven commonly used ML
models, and by injecting the training data of each model with
mislabelling, repetition, and removal faults before applying the
TDFM techniques. We also consider three different datasets,
and use metrics beyond just accuracy, capturing the differences
in resilience between protected and non-protected models [21].

There are three main findings in our study. First, some of
the commonly used TDFM techniques may not be effective
across all the ML models. Second, we find that the efficacies
of TDFM techniques vary across different datasets and fault
types. Finally, we find that of all the TDFM techniques,
ensembles offer the highest resilience across all models, fault
types, and datasets, but incur high overheads. Label smoothing
comes a close second, but does not incur as much overhead.

II. MOTIVATING EXAMPLE

What happens when faults are present in a training dataset?
We present an example from the health sciences. We consider
a publicly available Pneumonia dataset [24], which consists
of 5,863 X-ray images of pediatric patients in the Guangzhou
Women and Children’s Medical Center in China. Unlike many
other medical datasets, every image and label here is screened
by two expert physicians, making this a well-curated dataset.

We train a ResNet50 model on the Pneumonia dataset,
obtaining an accuracy of 90%; we refer to this trained model
as the golden model. We then inject 10% mislabelling faults
into the training data (uniformly at random). This mislabelling
rate is in line with average estimates (i.e., 7.4% to 20%) of
mislabelled images in publicly available medical datasets [9,
25, 26]. When ResNet50 is trained on the mislabelled training
dataset, we obtain an accuracy of only 55%, a significant
drop in classification accuracy—a patient’s chance of a correct
diagnosis is only slightly better than tossing an unbiased coin!

We can examine two specific images from the dataset
(Fig. 1). The golden model correctly classifies these images
as (a) normal and (b) pneumonia, respectively. However, the
ResNet50 model trained on mislabelled data (we call this the
faulty model) classifies both these images incorrectly. It classi-
fies the normal X-ray of a healthy patient (Fig. 1a) as having
pneumonia, but classifies the X-ray image with pneumonia
(Fig. 1b) as normal. Thus, while a healthy patient could be
subjected to additional screening or be prescribed unneeded
medication, a pneumonia patient may be left untreated, leading
to further respiratory complications or even a lung failure. This
example demonstrates that even small amounts of faults in

(a) Normal X-ray (b) X-ray with pneumonia

Fig. 1: With 10% mislabellings, ResNet50 classifies these
images from the Pneumonia dataset incorrectly. It labels (a)
as the one with Pneumonia, whereas it labels (b) as normal.

the training data can have significant impact on the functional
correctness of safety-critical systems. Therefore, it is important
to mitigate the faults using TDFM techniques.

III. METHODOLOGY

We first explain our methodology to select the different
TDFM techniques, followed by an explanation of the chosen
techniques. We then introduce the metrics for evaluation, and
finally apply them to the motivating example in Section III-D.

A. Survey Technique

We take a two-pronged approach to select a representative
set of TDFM approaches. We perform a detailed analysis of
related survey papers [13, 37–39]. In addition, we also aggre-
gate results from three sources, namely IEEE Xplore, arXiv,
and Github, using search keywords “label noise” and “noisy
training”. Overall, we identify more than 200 relevant research
articles. Among these, we focus on articles that propose
techniques to mitigate the effects of label noise, rather than
mechanisms for detecting label noise. We focus our search
on techniques tolerating mislabelling in neural networks1 as
we found no adequate techniques for tolerating data removal,
and no techniques at all for repetition. For example, current
approaches [40, 41] against data removal have only been
implemented as specific layer-wise architectural modifications
to shallow neural networks. We reject techniques that have
been outperformed by more recent work, as well as techniques
applied to ML problems other than image classification (as all
our datasets are image classification tasks).

The above criteria narrow down the articles to about 50.
We categorize the articles into five TDFM approaches: label
smoothing, label correction, robust loss, knowledge distilla-
tion, and ensembles. Finally, we select one representative
technique for each approach. We consider a technique to be
representative of a TDFM approach if (1) its code is available
and easily modifiable to include new neural networks and
datasets, (2) it has been evaluated on more than one neural
network architecture type and dataset, (3) it is capable of
tolerating artificial noise, (4) it does not rely on pre-trained
weights, and (5) is not on a combination of other techniques.

1We consider neural networks in this work as they are the dominant ML
models used for image classification tasks.
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TABLE I: Top three techniques for the five TDFM approaches. Representative techniques are marked with an asterisk.

TDFM Approach Technique Code? Architecture-Agnostic? Artificial Noise? Not Pre-Trained? Standalone?

Label Smoothing
Label Relaxation* [16] 3 3 3 3 3
Lukasik et al. [27] 7 7 3 3 7
OLS [28] 7 3 3 3 3

Label Correction
Meta Label Correction* [17] 3 3 3 3 3
ProSelfLC [29] 7 7 3 3 3
SMP [30] 3 7 7 7 3

Robust Loss
Active-Passive Losses* [18] 3 3 3 3 3
Charoenphakdee et al. [31] 3 7 3 3 3
Zhang et al. [32] 3 7 3 3 3

Knowledge Distillation
CMD-P [33] 7 3 3 7 3
KD-Lib [34] 3 3 7 3 7
Self Distillation [19] 3 3 7 3 3

Ensemble
LTEC [35] 3 7 3 3 3
SELF [36] 7 7 3 3 7
Super-Learner [20] 7 3 7 3 3

The above criteria are needed as our goal is to have an
apples-to-apples comparison of all techniques on identical
datasets with fault-injected training data. The first criterion is
important since we want to evaluate each technique on our own
datasets. Secondly, some articles present their results for only
one type of neural network architecture (e.g., they may present
results for only the ResNet family). These results may not
extend to other types of architectures like VGG or MobileNet.
Thirdly, some techniques may be designed for inherently noisy
datasets, e.g., Food-101 [42]. Such techniques are of little use
as well because they assume a pre-determined distribution of
noise and focus on tolerating noise from only certain label
classes. Fourthly, many techniques also rely on pre-trained
weights (e.g., ImageNet [11] weights) as their starting point.
However, these techniques cannot be easily compared with
other techniques, and pre-trained weights may even hinder the
performance of ML models [43]. Finally, for a fair comparison,
we require that the techniques selected for evaluation are
standalone and not a combination of other TDFM techniques.

Table I summarizes our selection process. It shows the top
three articles for each TDFM approach, along with how they
satisfy our selection criteria. Techniques that meet all selection
criteria are emphasized using an asterisk (*); we select these as
the sole representative of the respective TDFM approach. For
Knowledge Distillation and Ensemble approaches, we could
not identify a single representative technique that satisfies all
criteria. For these approaches, we re-implemented representa-
tive techniques in TensorFlow [44] using the descriptions and
configurations provided in the respective top three articles.

B. Background: TDFM Approaches Chosen

1) Label Smoothing (LS): Labels (outputs) in multi-class
datasets are often represented using one-hot encoding, e.g., in
a dataset with three label types, vector [0, 1, 0] can encode
an output of the second label type. Such “hard labels” result
in steep gradients during backpropagation. Label smoothing
allows associating non-zero probabilities with each label type,
reducing this gradient. That is, if K denotes the number

of label types and pi denotes a hard label probability (0
or 1), the smoothened output probability for label type i is
qi = (1− α)pi + α(1/K), where α is a hyperparameter. For
example, α = 0.1 transforms one-hot encoding x = [0, 1, 0]
into y = [0.033, 0.933, 0.033]. Label relaxation [45] is an
extension of label smoothing - label smoothing assumes a uni-
form distribution over all non-target label types, as indicated
by coefficient 1/K, whereas label relaxation generalizes this
by allowing the model to choose from any distribution, e.g., re-
sulting in z = [0.044, 0.933, 0.022]. Label relaxation mitigates
the effect of mislabelled data by reducing the distance between
correct and incorrect encodings.

2) Label Correction (LC): This is a meta-learning approach
that attempts to correct faulty labels in the training data during
training. Two neural networks are simultaneously trained –
the primary model for the actual classification task and a
secondary model to identify and correct faulty labels. The
secondary model must be trained on a clean subset of the
main dataset. A clean subset is obtained by manually verifying
a proportion of the training data. For artificial noise injection
experiments, a clean subset is formed by reserving a portion
of the training data from fault injection. The fraction of dataset
used as clean data is a hyperparameter, denoted γ.

3) Robust Loss (RL): During training, loss functions deter-
mine the deviation between predicted and actual labels in every
iteration. Cross Entropy (CE) [46] is the most common loss
function used but is not robust to label noise [47], whereas
an Active-Passive Loss (APL) function is more robust [18].
APL is defined as a weighted sum of two loss functions using
hyperparameters α and β, i.e., LAPL = α · LActive + β · LPassive.
LActive minimizes the loss on the target class but also reduces
the overall accuracy; LPassive minimizes the loss on non-target
classes and reduces the underfitting introduced by the active
loss function. We use Normalized Cross Entropy (NCE) as
LActive and Reverse Cross Entropy (RCE) as LPassive, both of
which are robust to label noise unlike CE [18].

4) Knowledge Distillation (KD): This involves training two
models, a teacher model and a student model with knowledge
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Fig. 2: Measuring AD across TDFM techniques between
faulty and golden models.

from the teacher model [48]. The teacher model’s output
activation function is modified to distill information.2 The
student model is trained with a combination of two loss
functions, its own and the teacher’s distilled softmax; their
relative weight is controlled by hyperparameter α – a larger
α gives more weight to new information over previously
acquired knowledge. This results in the student achieving a
higher accuracy than its teacher. The teacher model is usually
deeper than (i.e. has more layers) the student model. However,
we use self distillation, where the teacher and student models
are the same, which has been found even more effective [19].

5) Ensemble Learning (Ens): This approach involves train-
ing multiple models, and then combining their outputs at
inference time using simple majority voting. Since individual
models in an ensemble learn sufficiently diverse aspects of
the feature space, the ensemble can tolerate the effects of
faulty training data as demonstrated in our prior work [21].
The number of models in an ensemble is a hyperparameter, n.

C. Measuring Reliability

We measure the accuracy and the accuracy delta (AD) of
the models. The AD is the proportion of test images that
are misclassified by the faulty model out of all test images
that were correctly classified by the golden model. A more
resilient model has a lower AD. We find that the proportion
of test images misclassified by the golden model, but correctly
classified by the faulty model to not be significant. The AD
measures the precise effect of faulty training data on the
model’s outcome, by not double-counting test images that
are misclassified by both the golden and faulty models, and
thereby enables fair comparison between the different models.

We demonstrate how we measure the AD for each technique
(Fig. 2). First, the golden model refers to the model, trained on
training data without faults. Secondly, the faulty model refers
to the same model, trained on faulty training data. The baseline
refers to the faulty model without any TDFM techniques
applied. Finally, we measure the AD of each TDFM technique
applied on the faulty model relative to the golden model.

2For example, consider softmax: given the number of classes K and hyper-
parameter T , the softmax activation function exp(zi/T )/

∑K
j exp(zj/T )

converts the raw model outputs (logits) zi and zj at indices i and j into
probabilities that determine the likelihood with which the input belongs to
each label class. Regular softmax sets T = 1, producing a sharp probability
distribution around a single predicted class. A distilled softmax instead sets
T > 1, enabling softer distributions (similar to label smoothing).

TABLE II: Image classification datasets used

Name Dataset Size Task (# Classes)

Training Test

CIFAR-10 [49] 50,000 10,000 Objects and animals (10)
GTSRB [50] 39,209 12,630 Traffic signs (43)
Pneumonia [24] 5,239 624 Chest X-rays (2)

TABLE III: Neural network architectures used

Name Depth Architecture Summary

ConvNet Moderate 3 Conv + 3 FC + Max Pooling
DeconvNet Moderate 4 Conv + 2 FC w/ 0.5 Dropout
VGG11 Deep 13 Conv + 3 FC + Max Pooling
VGG16 Deep 13 Conv + 3 FC + Max Pooling
ResNet18 Deep 17 Conv + 1 FC + Avg Pooling
MobileNet Deep 27 Conv + 1 FC + Avg Pooling
ResNet50 Deep 49 Conv + 1 FC + Avg Pooling

D. Example

We revisit our motivating example of mislabelling in the
Pneumonia dataset (Section II) and apply each of the TDFM
techniques independently on the faulty ResNet50 model, re-
sulting in 5% AD (LS), 29% AD (LC), 15% AD (RL), 13%
AD (KD), and 5% AD (Ens). Label smoothing and Ensemble
learning yield the lowest AD. We thus conclude that these two
TDFM techniques are the most resilient for 10% mislabelling
in Pneumonia. We would like to know if certain techniques
outperform others for all models, fault types, and datasets? If
not, how should we identify a suitable TDFM technique?

IV. EVALUATION

Our goal is to measure the AD of each technique and
compare to the baseline. We use three datasets for our evalua-
tion (Table II): GTSRB, Pneumonia, and CIFAR-10. GTSRB
and Pneumonia both represent safety-critical problems, namely
road sign recognition for self-driving cars and medical diag-
nosis, respectively. We also use CIFAR-10 due to its balanced
nature (i.e., equal number of images per label class) and as
it represents a general object detection problem. Pneumonia
is much smaller in size than other datasets, reflecting the
difficulty of obtaining quality medical images for training [7].

All three datasets we used are well-curated. For example,
images in CIFAR-10 were manually labelled [49] and images
in the GTSRB dataset were labelled automatically but verified
by humans [50]. All images in the Pneumonia dataset were
manually verified by two expert physicians. Therefore, we
assume there are no inherent training faults in these datasets,
and that the only faults are those that we inject into the training
data. The golden model is hence trained on the original dataset.
We considered only image data as it was difficult to find
sufficiently well-curated data sets for other applications.

For our experiments, we used seven popular neural networks
for image classification, as shown in Table III, of varying ar-
chitecture types and depth: ConvNet, DeconvNet, MobileNet,
ResNet18, ResNet50, VGG11, and VGG16. We believe that
the diversity of the neural network architectures encourages
models to learn different features from a common dataset.
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(b) VGG16, Mislabelling

0 10 30 50
Fault Amount (%)

0

10

20

30

40

50

60

70

AD
 (%

)

Baseline
LS
LC
RL
KD
Ens

(c) ConvNet, Mislabelling
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(d) MobileNet, Mislabelling
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Fig. 3: AD of models protected with TDFM techniques versus the baseline, trained on GTSRB, with mislabelling faults in
(a-d) and removal faults in (e-h). The error bars in the results indicate the 95% confidence intervals. Lower values are better.

Each TDFM technique requires certain hyperparameter
choices (such as α and β for Robust Loss (Section III-B3)). We
used the hyperparameters recommended by the implementers
of the techniques [16–18, 48]. We had found ensembles of
size 5 models to be most effective in our prior work [21]. Our
ensemble consists of the 5 models with the lowest baseline
AD: ConvNet, MobileNet, ResNet18, VGG11, and VGG16.

We use the TF-DM fault injector [51] for injecting faults
into training datasets. We inject the three types of training data
faults described earlier (Section I). We first train each model
with fault-free training data to obtain a golden model, and
then train the same model, applying each TDFM technique,
with fault injected training data, resulting in a faulty model.
We then collect the prediction results on the test dataset for
both the golden and faulty models, and calculate their AD. We
consider three different fault percentages: 10, 30 and 50 for
each fault type, to study the effects of different fault amounts.
For example, a fault percentage of 30% mislabelling means
that 30% of the training data was mislabelled (at random).

The average training time for each configuration was about
45 minutes. To reduce the variance in our results, we evaluated
each configuration 20 times. In total, training took 33 days of
computational time, and inference took 6 hours, running on
Nvidia P100 GPUs with an Intel E5-2650-v4-Broadwell CPU.

A. Baseline Accuracy without Fault Injection

We first measure the classification accuracies of each model,
trained without any injected training data faults, for each
TDFM technique applied. It is important to understand the
effects of each technique on the golden model accuracy before
measuring the AD after fault injection. We show the results
only for four models due to space constraints (Table IV), but

find similar results in other models of the same architecture
class (i.e., ResNet50 and ResNet18). However, as we were not
able to run label correction on MobileNet, we skipped it.

We observe that the TDFM techniques do not affect the
golden model accuracy in most cases. Exceptions include label
correction and robust loss, which have degraded accuracy on
models trained with the Pneumonia dataset, as these techniques
require larger sized datasets to be more effective. A small
sized dataset does not provide sufficient samples to train the
secondary model in label correction. For robust loss, it applies
the NCE+RCE loss function (Section III-B), where the active
part of the loss function is prone to underfitting. The small
size of the training dataset causes severe underfitting, which
is not recoverable by the passive part of the loss function.

Knowledge distillation has high baseline accuracy, in fact,
the highest across models for GTSRB. However, it is not the
most resilient TDFM technique (shown later in Section IV-B).

B. AD across Models

First, we analyze the effectiveness of the different TDFM
techniques across the seven models. Due to space constraints,
we show the results for four models with mislabelling faults
for the GTSRB dataset (Figs. 3a to 3d); the other configura-
tions exhibit similar results and are hence not shown.

We observe in most configurations, the baseline’s AD is
higher than the AD of the models after applying the TDFM
techniques (recall that higher AD means it is less resilient).
This is expected as the goal of TDFM techniques is to tolerate
faults in the training data. However, their effectiveness varies
as evidenced by some techniques having lower ADs than oth-
ers and hence being more effective. For these configurations,
we find both label smoothing and ensembles to be highly

5



TABLE IV: Model accuracies when trained without fault in-
jection. Datasets: CIFAR-10 (1), GTSRB (2), Pneumonia (3).
The highest accuracy for each configuration is emphasized.

Model Dataset Base LS LC RL KD Ens

ResNet50
1 93% 93% 91% 86% 73% 85%
2 91% 96% 86% 94% 97% 96%
3 90% 91% 78% 74% 88% 93%

VGG16
1 88% 93% 93% 82% 89% 85%
2 93% 94% 87% 95% 96% 96%
3 90% 86% 73% 77% 85% 93%

ConvNet
1 82% 76% 82% 81% 80% 85%
2 93% 92% 79% 77% 97% 96%
3 92% 88% 75% 68% 91% 93%

MobileNet
1 87% 84% - 73% 73% 85%
2 88% 87% - 86% 92% 96%
3 91% 90% - 76% 90% 93%

effective, knowledge distillation having a mixed effect, while
robust loss and label correction are largely ineffective.

We find that ensembles consistently outperform the individ-
ual models equipped with TDFM techniques. This is because
the models used to construct the ensembles have different
architecture types (e.g. residual layers in ResNet models,
stacked convolutional layers in VGG models), the ensemble
can tolerate faults provided the majority of the individual
models do not misclassify simultaneously.

Label smoothing is able to mitigate the effects of misla-
belled data without inhibiting the models’ ability to learn or
being affected by network architectures. However, it is not as
effective as ensembles at mitigating training data faults.

TDFM techniques do not always improve resilience over
the baseline. For instance, in Fig. 3a, knowledge distillation
has lower AD than the baseline when the mislabelling is
10% or less, while having a higher AD when mislabelling
is 30% or more. When mislabelling rates are low, knowledge
distillation functions as a learned label smoothing function
(Section III-B). However, when mislabelling rates are high,
the student model is unable to filter out incorrect information
from the teacher, resulting in a higher AD, i.e., a “garbage
in, garbage out” scenario [33]. We also observe that some
models with knowledge distillation, despite having the highest
baseline accuracies, were not the most resilient. For example,
knowledge distillation in ResNet50 had a baseline accuracy
of 97% for GTSRB (Table IV), but had 42% and 55% AD at
30% and 50% mislabelling respectively (Fig. 3a).

Further, robust loss and label correction have a higher AD
than the baseline (Fig. 3c). Compared with other models in
our experiment, ConvNet is a shallow model, with fewer
layers. We find that robust loss performs poorly for shallow
models, which are unable to learn deep features of training
data. This is because robust loss attempts to reduce overfitting
to mislabelled data by using softer (i.e., normalized) loss
functions. However, the softened loss functions inhibit the
ability of shallower models to learn from the data.

Label correction utilizes two models that learn concurrently,
and the secondary model acts as an additional validation

loss function to the primary model, resulting in a softer loss
function like robust loss. In contrast, the baselines use the
popular cross-entropy loss function, which does not suffer
from this effect. The low resilience of both label correction
and robust loss on models like ConvNet show that alternative
loss functions have a negative effect on shallower models, but
have a positive effect on deeper networks (e.g. ResNet50).

Observation 1 Ensembles and label smoothing are the most
resilient TDFM techniques across the ML models.

C. AD across Fault Types

We expand our evaluation to other fault types such as data
removal, while continuing to use the GTSRB dataset (Figs. 3e
to 3h). We do not run label correction on fault types other
than mislabelling since label correction has no effect on them.
We make two observations. First, all models have a lower
AD compared to mislabelling faults. This means that most
models can still learn effectively with fewer training examples
(as much as 50% removals) in this dataset. Secondly, we see
that the baseline AD is still reduced by most techniques. In
fact, the TDFM techniques effective against mislabelling were
also effective against removal faults, except for robust loss
on ConvNet (Fig. 3g). Robust loss is ineffective against data
removal faults on ConvNet for reasons that are similar to those
explained earlier (Section IV-B). We do not show results for
data repetition because the trends are similar to data removal.

We also performed fault injection using combinations of
multiple fault types (e.g., mislabelling combined with removal.
However, we did not find significant differences with the
results of injecting individual fault types. For example, when
we combined mislabelling with either removals or repetitions,
the AD was statistically similar to that of mislabelling only.
Similarly, when we combine removal with repetition, the AD
was statistically similar to that of repetition only. Therefore,
we believe that our findings are applicable even under multiple
training data faults.

Observation 2 TDFM techniques effective against data mis-
labelling are also effective against removal and repetition.

D. AD across Datasets

We expand our evaluation to all three datasets (Fig. 4).
We observe that CIFAR-10 and Pneumonia generally have
higher AD than GTSRB. While CIFAR-10 contains training
images from fewer image classes than GTSRB, CIFAR-10’s
images often contain multiple objects in the image background
while GTSRB’s images are more focused on the road sign.
Pneumonia is about 1/10-th the size of the other two datasets.
Since ML models usually require lots of training data for
accuracy, we expected models trained with Pneumonia to be
less resilient overall. Surprisingly however, the models were
quite resilient to both removal and repetition faults across all
datasets, (Figs. 4b, 4d and 4f) including Pneumonia.

Further, we observe that some techniques are effective only
on specific configurations. We, however, find that ensembles
are resilient across most configurations of models, fault types,
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Fig. 4: AD of individual models, compared with models
protected with TDFM techniques, when trained with faulty
CIFAR-10, GTSRB and Pneumonia datasets. The error bars
indicate the 95% confidence intervals. Lower values are better.

and datasets. Label smoothing also improves resilience across
most configurations, though not as much as ensembles do.

Label correction had a mixed effect, working well for
CIFAR-10 and Pneumonia, while underperforming for GT-
SRB. Notice (Fig. 4a and Fig. 4e) that label correction has
the lowest AD among all techniques when 50% mislabelling
is injected into CIFAR-10 and Pneumonia, but has the second
highest AD for GTSRB for the same configuration (Fig. 4c).
CIFAR-10 and Pneumonia have fewer classes, 10 and 2
respectively, than GTSRB, which has 43 classes. Label cor-
rection uses a secondary model to correct labels - we found
that the number of classes in the dataset had an impact on
the secondary model’s ability to correct labels. Because the
secondary model uses a multilayer perceptron, it cannot handle
larger numbers of classes. Surprisingly however, the size of the
dataset did not have an impact on label correction - we had
expected the secondary model to have fewer clean samples
from a smaller dataset, hence, hindering label correction.

Similar to GTSRB, in other datasets, knowledge distillation
has a higher AD than the baseline when mislabelling increases,
but a lower AD at lower fault amounts. For repetition faults,
however, knowledge distillation has the second highest AD
after robust loss (Figs. 4b, 4d and 4f). By default, more
weight is given to the teacher’s distilled loss. When the student
encounters repeated data, the weight is implicitly shifted
towards the student, reducing the technique’s effectiveness.

Robust loss performed well when mislabelling was 30%
or less across datasets, but performed poorly at 50% mis-
labelling. For repetition faults, robust loss had even higher
AD in CIFAR-10 (Fig. 4b) and Pneumonia (Fig. 4f) than for
GTSRB (Fig. 4d). Finally, robust loss has a high AD for most
configurations in the Pneumonia dataset (Figs. 4e and 4f).

Observation 3 Ensembles are resilient across different mod-
els, fault types, and datasets. Label smoothing comes second.

E. Runtime Overhead Analysis

We measured the runtime overhead of the TDFM tech-
niques, consisting of the training and inference overheads
respectively. For inference time, we find that the training
overhead is 1×, meaning no change, across all configura-
tions except for ensembles, which have a 5× inference time
overhead (as they consist of five models). For training time,
there is more variation across techniques and datasets. Label
smoothing has the lowest training overhead since it is applied
only once to the training dataset, prior to backpropagation.
Knowledge distillation involves training the model twice,
through the teacher and the student models. However, instead
of a 2× overhead, it only incurs a 1.5× overhead overall, since
the student model trains faster than the parent. Robust loss has
varying training overheads, as certain configurations behave
differently to loss functions. Label correction has a higher
overhead than most other techniques, as it requires training a
secondary model simultaneously. Finally, ensembles have the
highest training overhead as they require training five models.

V. CONCLUSIONS

Faults in training datasets for machine learning (ML) ap-
plications are often unavoidable. Such faults affect inference
outcomes, which can be significant in safety-critical settings.
Therefore, it is important to mitigate training data faults.

We explored the effectiveness of different techniques that
have been proposed to deal with faults in training data, under
different datasets, ML models, and fault rates and types. We
find that using an ensemble of multiple ML models is the
most effective approach to dealing with training data faults.
Ensembles, however, require significant extra resources (for
both training and inference). Label smoothing, which comes
next in terms of effectiveness, is a practical alternative under
resource constraints as it incurs much lower overheads. As
future work, we will expand our evaluation to other data types.

All our experimental results and code available at:
https://github.com/DependableSystemsLab/TDFM-Techniques
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