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Abstract—Safety-critical domains, such as healthcare and au-
tonomous vehicles, employ machine learning (ML), where mis-
predictions can cause severe repercussions. Training datasets may
contain faults, thereby compromising ML accuracy. Ensembles,
where multiple ML models vote on predictions, are effective at
maintaining predictive capability, and thus resilient against faulty
training data because individual models focus on diverse input
features. Nevertheless, ensemble diversity varies per input. Hence,
weighted ensembles can bolster resilience by assigning unique
weights to constituent models. While existing weighted ensembles
focus on output-space diversity, we propose leveraging their
feature-space diversity to better capture model independence and
achieve greater resilience. Therefore, we present ReMlX, which
applies explainable artificial intelligence to extract the feature-
space diversity of ensemble models, and adjusts their weights to
maximize resilience. Compared to its most competitive baseline,
ReMlX is 12% more resilient but 15% slower than dynamic
weighted ensembles based on stacking.

Index Terms—Error resilience, Machine learning, Explainabil-
ity

I. INTRODUCTION

Machine learning (ML) systems have been deployed in
numerous safety-critical domains, including healthcare [1] and
autonomous vehicles (AVs) [2]. Supervised learning, which
involves training models on labelled data, is the foundation
of many of these systems [3]. To acquire the large volumes
of training data for ML, methods such as crowdsourcing [4]
and automatic labelling [5] are employed. However, these
approaches have led to the emergence of faulty training data,
including instances of mislabelling (see Table I). Faulty train-
ing data can significantly impair the capacity of ML models
to learn effectively and accurately classify test inputs [6],
resulting in severe failures during misclassifications. Incorrect
predictions made by ML models can have dire repercussions,
including injuries and fatalities stemming from AV accidents.

Resilient ML models are those capable of correctly clas-
sifying test inputs, even if a subset of the training data is
faulty. We have shown in our prior work [7] that ensembles
are effective at providing resilience. We define resilience as the
ability of an ML component to retain high predictive capability
despite be- ing trained with faulty training data. Ensembles are
formed by training multiple ML models (typically 3) indepen-
dently on the same dataset. During inference, predictions from
these models are aggregated through a voting mechanism (e.g.,
simple majority voting). Because the individual models within
an ensemble often capture diverse elements of the feature
space [8], the ensemble can mitigate the impact of faulty

training data during inference by outvoting the model with the
wrong prediction. While ensembles have been widely used to
improve ML accuracy [9–11], our focus is on its resilience.

(a)
Reference

(b) Input (c) ConvNet (d) Decon-
vNet

(e) VGG11

Fig. 1: (a) No vehicles permitted sign. (b) Test Image #896
from GTSRB. (c, d, e) Feature spaces of different ML models,
extracted using Smooth Gradients, while inferring test image.

Consider an ensemble of three models (ConvNet, Decon-
vNet, VGG11), independently trained on a dataset of Ger-
man traffic sign images, GTSRB [12] that we injected with
randomly mislabelled training images. During inference, the
ensemble, under simple majority voting, outputs a correct
prediction if at least two of its models correctly predict.

But, what happens when the ensemble mispredicts? When
a test image (Fig. 1b) is passed to the ensemble for inference,
ConvNet and DeconvNet both mispredict the test image as
a ‘100 km/h speed limit’ sign, while VGG11 alone correctly
predicts the image as a ‘no vehicles permitted’ sign. Under
simple majority voting, the ensemble would mispredict as
ConvNet and DeconvNet would incorrectly outvote VGG11,
which will lead to a disastrous outcome if deployed on an AV.

Our objective is to reduce the misclassifications by en-
sembles under training data faults, thereby boosting their
resilience. To address the shortfalls of simple majority voting,
weighted ensembles [13–16] have been introduced, wherein
the predictions of each model do not carry equal weight. Exist-
ing approaches for weighted ensembles focus on maximizing
the global (across the entire test dataset) output-space diversity
between ML models to increase the probability of correct
predictions. ConvNet, DeconvNet, VGG11 have 85%, 82%,
72% accuracy respectively. If weights were assigned based on
accuracy alone, ConvNet and DeconvNet would be assigned
higher weights, and again erroneously outvote VGG11.

Each model in an ensemble focuses on a set of features or
feature spaces to make its prediction. Explainable AI (XAI)
techniques can identify such features and their significance
to the prediction result [17]. For example, we adopt Smooth
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Gradients, an XAI technique that extracts and visualizes the
local (input-specific) feature spaces of each model, shown in
Figs. 1c to 1e. Brighter pixels indicate the features of interest
to the ML model. Both ConvNet and DeconvNet focus on the
content within objects (i.e. the circle’s blank interior), while
VGG11 focuses on the shape (i.e. the circle’s thick outline).
Because ConvNet and DeconvNet had similar feature spaces,
a weighted ensemble should assign greater weight to VGG11
during voting. This is the main idea we explore.

We propose ReMlX1, a method to boost ML ensemble
resilience at inference by leveraging XAI to maximize feature-
space diversity. ReMlX operates in three steps. First, an en-
semble of individual models are trained with the same (faulty)
training data. Then, ReMlX uses XAI techniques to generate
the local feature spaces separately for each constituent model.
Finally, ReMlX generates weights that maximizes the feature-
space diversity between models, by applying diversity metrics.

To the best of our knowledge, ReMlX is the first technique
to incorporate feature-space diversity to dynamically generate
weights at inference time for building resilient ensembles
against faulty training data. In summary, we make the
following contributions in this paper.

• Developing ReMlX, a novel method to induce ensemble
resilience during inference by deriving weights for voting
from their XAI-generated local feature-space diversity.

• Systematically shortlisting state-of-the-art XAI tech-
niques (Counterfactual Explanations, Integrated Gradi-
ents, LIME, Smooth Gradients, SHAP) and selecting the
most efficient, faithful and robust technique against ML
models trained with faulty training data. Also, identifying
diversity metrics (Coefficient of Determination, Cosine
Distance, Frobenius Norm, Wasserstein) that contrast ML
models’ feature matrices for weight generation.

• Experimentally evaluating the predictive capability
of ReMlX across three different image-classification
datasets, with varying types and amounts of injected
training data faults, against seven baselines: best indi-
vidual model, uniform majority, uniform average, static
weighted, dynamic weighted (stacking), bagging, and
boosting. We use balanced accuracy (BA) and F1-score
(F1) as metrics to measure predictive capability across
balanced and imbalanced multi-class datasets.

Compared to its most competitive baseline, we find ReMlX
is 12% more resilient but only 15% slower than dynamic
weighted ensembles based on stacking. We select Smooth
Gradients as the best XAI technique, and, Cosine Distance as
the most effective feature-space diversity metric for ReMlX
to maximize ensemble resilience. ReMlX is more resilient
compared to baselines even as the ensemble size increases.

II. BACKGROUND

A. Fault Model

Following our prior work [8], we consider three categories
of faults that frequently arise in training data. Table I shows

1https://github.com/DependableSystemsLab/Remix

the prevalence of these faults.
1) mislabelling faults – where data is erroneously labelled,
2) repetition faults – where input-output pairs are repeated,
3) removal faults – where a fraction of data may be deleted.
Reports indicate that mislabelling and removal faults in

training data can reach as high as 70%, even within safety-
critical datasets [18], including the Lyft [19] and Chest X-Ray
datasets [20]. Additionally, repetition faults have been identi-
fied in the widely utilized GTZAN music dataset [21]. Thus,
training data faults are widespread in real-world datasets.

TABLE I: Training data faults found in ML training datasets
across different domains. Mis stands for mislabelling.

Dataset Domain % Faulty Fault Type(s) Source

Udacity [22] AV 33 Mis, Removal [23]
Lyft Level 5 [24] AV 70 Mis, Removal [19]

ChestX-Ray14 [25] Medical 20 Mis [20]
ImageNet [26] Objects 5.83 Mis [6]

COCO [27] Objects 45.5 Mis, Removal [28]
GTZAN [29] Music 10.6 Mis, Repetition [21]

Previous research on training data faults [7, 8] has predom-
inantly concentrated on symmetrically (uniformly) distributed
faults across label classes for sake of simplicity. Instead,
we wish to study faults that better emulate their real-life
distributions in datasets, as done in our prior work [30]. Actual
fault distributions observed in datasets like CIFAR-10 are
asymmetric [30]. This is because certain label classes can be
more easily confused with one another during labelling, e.g.,
cats resemble dogs rather than trucks.

B. Ensembles

Ensembles are made up of numerous ML models trained in-
dependently and inspired by N-version programming [31–33].
During inference, each ML model in the ensemble receives the
same input and makes separate predictions. These predictions
are merged using voting (i.e. simple majority) to generate a
single prediction. Ensembles for classification are resilient to
faulty training data due to prediction diversity across their
constituent models [8, 34]. Compared to alternate mitigation
strategies against faulty training data, ensembles have been
found to be the most resilient, while requiring no additional
hyperparameter tuning [7] (and thus require low effort).

Ensembles can be considered a form of meta-learning, an
approach where learning algorithms learn from each other [35]
to improve overall performance. Meta-learning divides com-
ponents into base-learners and meta-learners. Each constituent
ML model is a base-learner while the aggregation mechanism
(i.e. ReMlX) serves as the meta-learner.

C. Post-Hoc XAI Techniques

Explainable AI (XAI) techniques can be applied to obtain
a trained ML model’s feature space [36]. XAI techniques can
be categorized into ante-hoc and post-hoc [36]. Ante-hoc XAI
integrates explainability into the design of the ML model
itself, ensuring a guaranteed level of explainability at the
feature space level. However, this approach requires changes
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to the architecture of the ML model, which demands expert
knowledge. Consequently, we use post-hoc XAI techniques,
which do not require changes to the architectures of models.

Post-hoc XAI techniques can be classified as model-
agnostic and model-dependent. Model-agnostic techniques can
be applied to any ML model, while model-dependent tech-
niques only work for certain models. Our criteria for choosing
XAI techniques is that they must be: (1) local, (2) post-
hoc, (3) compatible with image classification and (4) publicly
available. Based on these criteria, we select three model-
agnostic techniques: SHAP [37], LIME [38], and Counterfac-
tual Explanations [39]. We also select two model-dependent
techniques that assume the models are differentiable: Inte-
grated Gradients [40] and Smooth Gradients [41]. We consider
only DNNs, which are all differentiable, and hence gradient-
based techniques can be applied. The XAI techniques generate
explanations as visualizable 2D arrays i.e., feature matrices.

1. SHAP. Shapley values originated from cooperative game
theory [42], where values quantify the contribution of each
individual player to the final result, with higher values sig-
nifying a greater contribution. In image classification, each
input pixel is conceptualized as a player, while the inference
process represents the game itself. Since calculating Shapley
values on N input features requires evaluating 2N possible
input configurations, SHAP [37], SHapley Additive exPlana-
tions, approximates the Shapley value. SHAP identifies input
features that have the greatest impact on the final prediction
outcome and outputs a matrix of feature importance scores.

2. LIME, which stands for Local Intepretable Model-
Agnostic Explanation [38], fits a surrogate model around the
perturbed values of test inputs. The surrogate model consists
of a lower complexity, more interpetable, ML model (i.e. a
linear classifier) that mimicks the original model’s behaviour.
For image classification, LIME produces a segmentation mask
over the test image to indicate regions of interest to the model.

3. Counterfactual Explanations (CFE) illustrate the min-
imal changes in the input feature values necessary to achieve
an alternative prediction outcome. CFEs explain ML inference
results in a causal framework: if x occurred, y would not have
occurred [39]. They signify the least modifications needed
to reclassify a test input into a different class from the one
initially predicted by the ML model. In image classification,
CFEs denote the minimal number of pixels that must be
modified for a ML model to produce a different classification.

4. Integrated Gradients (IG) [40] demonstrate which
pixels contribute more to a prediction, as pixel intensity is
gradually increased. Starting with a baseline image (i.e. a
black image), IG accumulates gradients as pixel intensity is
slowly increased at each step, beginning initially with baseline
pixels until the pixels resemble the input image. IG produces a
matrix of gradients where higher magnitudes indicate greater
influence on the prediction.

5. Smooth Gradients (SG) [41] are similar to IG where
gradients are computed over the test image. Unlike IG, gradi-
ents are computed and averaged across mulitple images, where
each image is injected with Gaussian noise. This smooths out

noise and sharpens the explanation compared with IG.

(a) Test (b) SHAP (c) CFE (d) CFE+Test

(e) LIME (f) IG (g) SG

Fig. 2: XAI Techniques applied on ConvNet trained with
MNIST. (a) Test Image. (b) SHAP (c) CFE (d) CFE applied
on test image of 4, now resembling 9. (e) LIME (f) IG (g) SG

XAI Examples on MNIST. We show visual examples of
the feature matrices after applying various XAI techniques on
a test image from the MNIST [43], a dataset for classifying
handwritten numeric digits. We train a ConvNet model on the
MNIST dataset and ensure that the test image in Fig. 2a is
classified as 4. For SHAP, LIME, SG, IG values, Figs. 2b
and 2e to 2g show their saliency maps where the coloured
areas indicate pixels of greater influence on the model. The
CFE is shown in Fig. 2c, exhibiting a small set of pixels
highlighted in white. When this CFE is applied to the original
test image (Fig. 2d), it resembles a 9, revealing the minimal
set of pixel alterations to change the prediction outcome.

XAI Technique Properties. XAI techniques are typically
evaluated on five main properties [44]: faithfulness, robustness,
randomization, localization, complexity. Faithfulness measures
whether explanations change when important features, as-
signed high relevance scores by the XAI technique, are modi-
fied. Robustness assesses the stability of explanations when the
test inputs are subjected to minor changes. Randomization de-
termines whether an explanation changes if the model weights
are subject to randomized noise. Localization evaluates how
well explanations are correlated to user-defined regions of in-
terest. Complexity measures the conciseness of an explanation,
by estimating the number of distinct features used. A smaller
number of features facilitates human interpretability.

However, the importance of each property differs according
on how the XAI technique is applied. Since our objective
is to use XAI techniques to determine dynamic weights,
we care only about faithfulness and robustness. While ran-
domization emphasizes the importance of obtaining unique
explanations on models with different weights, our focus is on
achieving explanations from faulty models, which may retain
their explanations from the golden model. Localization only
applies to object detection tasks, while our focus is on image
classification. Complexity is irrelevant for our (non-interactive)
automated use of XAI. Since resilience is our goal, not human
interpretability, a more complex explanation is acceptable if it
is more faithful and robust. We also consider efficiency, as
slow XAI techniques would increase inference times.
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D. Diversity Metrics

Ensembles are resilient due to the diversity in behaviour
of its constituent models [7, 8, 34]. Diversity metrics express
the dissimilarity between model behaviour. Kuncheva et al.
presented work that extensively studied the relation between
ensemble diversity and accuracy, leading to their proposal of
ten statistical metrics to represent diversity [34] such as the Q
statistic, disagreement measure, entropy, and Kohavi-Wolpert
variance. However, their proposed metrics were largely limited
to binary classifiers. In contrast, we focus on diversity metrics
compatible with multi-class classifiers. We describe metrics
used to measure output-space and feature-space diversity.

Output-Space Diversity. The output-space of an ML model
is limited to predictions and their confidences (i.e. softmax
probabilities). We use Shannon entropy (H) [8], an established
ensemble diversity metric, to determine output-space diversity.
H is calculated on the ensemble prediction of a single test
input. If S denotes the number of classes in a dataset, and pi
denotes the ensemble’s prediction confidence (i.e. the softmax
probability) belonging to class i, then H is given by:

H = −

(
S∑

i=1

pi ln pi

)/
lnS. (1)

Feature-Space Diversity. The feature representation for
image classification ML models is expressed as a m×n feature
matrix (Section II-C). To evaluate the feature-space diversity
between two models, we need diversity metrics between their
two feature matrices, A and B. We require diversity metrics
to work on matrices instead of one dimensional vectors and
to be commutative (i.e. same result regardless of the ordering
of A and B). Hence, we identify four metrics: Coefficient of
Determination, Cosine Distance, Frobenius Norm [45], and
Wasserstein Distance [46]. We explain how each feature-space
diversity metric is calculated on A and B.

1. Coefficient of Determination or R2, is equal to the
squared Pearson correlation obtained from the covariance
matrix between A and B. R2 is computed as follows, where
A and B are the means of their respective matrices, and σA

and σB are their standard deviations.

R2 =


m∑
i=1

n∑
j=1

(Ai,j −A)(Bi,j −B)

mn · σAσB


2

(2)

R2 ranges from 0 and 1, where 0 indicates maximal
diversity and 1 indicates no diversity.

2. Cosine Distance is based on cosine similarity, which
measures the similarity between two vectors, and is widely
used to compare text embedding similarity in natural language
processing. We first flatten A and B into one dimensional
vectors and compute cosine distance as follows: 1 - A·B

||A||||B|| .
It ranges from 0 and 2. Values closest to 0 indicate the lowest
diversity, while values closer to 2 indicate the highest diversity.

3. Frobenius Norm [45] is analagous to the elementwise
Euclidean norm. We compute the Frobenius norm on A -

B. The Frobenius Norm is unbounded, with higher values
indicating greater diversity.

||A−B||F =

√√√√ m∑
i=1

n∑
j=1

(Ai,j −Bi,j)2 (3)

4. Wasserstein Distance [46] (or Earth mover’s distance)
measures the distance between two probability distributions
(i.e. A and B) by estimating the cost required to convert one
distribution to match another. The Wasserstein Distance is
unbounded, with higher values indicating greater diversity.

W (A,B) =
1

nm

m∑
i=1

n∑
j=1

|Ai,j −Bi,j | (4)

III. MOTIVATIONAL CASE STUDY

We perform a case study to understand how an ensemble
predicts, under training data faults, and compare its output-
space and feature-space diversity. We aim to answer three
questions: (1) Is simple majority or uniform average voting
sufficient for ensembles? (2) How much feature-space diversity
is present compared with output-space diversity? (3) Should
we use dynamic weights based on feature-space diversity?

We use the German Traffic Sign Recognition Benchmark
(GTSRB) [12], a publicly available dataset for autonomous
driving, containing 39,209 training and 12,630 testing images
belonging to 43 different categories of traffic signs in Ger-
many. We use GTSRB’s pre-defined training and testing splits.

Suppose we have seven neural network architectures: Con-
vNet, DeconvNet, MobileNet, ResNet18, ResNet50, VGG11,
VGG16. We build an ensemble of three models, the minimum
number required for simple majority voting. Because we
wish to evaluate the resilience of ensembles against faulty
training data, we inject 30% random mislabelling into GTSRB
following its extracted fault pattern (see Section V-B). We pick
the three-model ensemble with the highest balanced accuracy
(BA) under 30% random mislabelling: ConvNet, ResNet50,
VGG11. We also train this ensemble with the GTSRB dataset,
without any injected faults - this is the golden dataset.

3 correct
79%

2 correct

15%
1 correct3% 0 correct1%

(a) Golden

3 correct

58%

2 correct

24% 1 correct
12%

0 correct4%

(b) 30% Mislabelling

Fig. 3: Proportion of correct models by the best ensemble on
GTSRB with (a) no faults and (b) 30% random mislabelling.

We evaluate the ensemble on the test dataset, and count the
number of constituent models that correctly predict test data.
Fig. 3 shows the proportion of test data correctly classified
by varying numbers of constituent models, comparing the
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ensemble’s predictive capability on GTSRB, when trained with
golden and 30% mislabelling respectively. Because ensembles
using simple majority voting yield correct predictions as long
as there are at least 2 correct models, we focus on the 1-
correct cases (note that 0-correct cases are unrecoverable).
When training data faults are injected into the dataset, the
proportion of the 1-correct cases increases from 3% to 12%.
The increase in 1-correct cases shows we need an alternative
approach to simple majority voting, under training data faults.

We consider using uniform average voting (i.e. soft vot-
ing [47]). However, since the prediction probabilities are
relatively centred around a single class, we observe uniform
average voting produce similar results to simple majority
voting. This leaves the option of using weighted ensembles.

Motivation 1: Simple majority and uniform average voting
for ensembles are insufficient under faulty training data.
Should we use output-space or feature-space diversity? For

each input in GTSRB’s test dataset, we evaluate the ensemble’s
output-space and feature-space diversity under 30% misla-
belling. The output-space diversity is calculated using the
Shannon entropy H (Section II-D), which ranges between 0
(no diversity) and 1 (most diverse). The feature-space diversity
is calculated using R2 as the metric and SHAP as the XAI
technique. Since R2 ranges between 0 (most diverse) and
1 (no diversity), we represent the feature-space diversity by
computing 1 − R2. We show the scatterplot of the output-
space Vs. feature-space diversity in Fig. 4a. We observe that
there is a greater range of diversity values in the feature space
compared to the output space. This implies that feature-space
diversity better captures the differences between models under
training data faults compared to output-space diversity.

Motivation 2: Ensembles have a larger range of feature-
space diversity compared to output-space diversity.
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(b) 1-correct cases only

Fig. 4: Output-space vs Feature-space Diversity evaluated on
the most resilient 3-model ensemble against 30% mislabelled
GTSRB. Each point represents a single evaluated test input.

We then show a scatterplot (Fig. 4b) where we only plot the
test inputs with the 1-correct constituent models, which is the
only case that can be rectified with weighted voting. We ob-
serve that 1-correct cases generally have a higher feature-space
diversity compared to other cases. Models in the ensemble
tend to focus on similar features when encountering 3-correct
and 0-correct cases. However, we still observe significant
variations in feature-space diversity among test inputs, despite
using the same models in the ensemble. This motivates the

case for dynamically weighted ensembles using feature-space
diversity, where weights can be uniquely adjusted per input.

Motivation 3: Dynamic weights may exploit variations in
ensemble feature-space diversity to provide resilience.

IV. METHODOLOGY
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Fig. 5: Workflow diagram of ReMlX when applied on an
example road sign image from GTSRB.

As shown in Fig. 5, ReMlX consists of five components:
(1) Feature Space Extraction, (2) Feature-space Diversity
Metric, (3) Feature Sparseness, (4) Weight Generation and
(5) Weighted Majority Voting. ReMlX extracts the feature
spaces of the models in the ensemble, calculates their feature-
space diversity and their feature sparseness, generates the
model weights, and combines the models’ predictions through
weighted majority voting. Models with greater feature-space
diversity are assigned higher weights as diversity is the key
component behind resilience in ensembles [8], while using
feature sparseness to ensure that the diversity is useful for
improving resilience [48]. While ReMlX requires an XAI
technique to generate the feature space and a diversity metric
to compare the feature matrices, it does not depend on any
specific XAI technique or diversity metric. For efficiency, when
all models predict the same label, ReMlX directly outputs the
label since ensembles have no influence under such outcomes.
We describe each component in further detail.

(1) Feature Space Extraction. ReMlX applies an XAI tech-
nique (i.e. Counterfactual Explanations, Integrated Gradients,
LIME, SHAP, or Smooth Gradients) to extract the feature
space from the ML model, and outputs a 2D feature matrix.

(2) Feature-space Diversity Metric. Consider an ensemble
composed of N individual models, where there is a dis-
agreement among predictions. For each individual model, its
prediction is passed to the XAI module, which uses an XAI
technique to attribute the prediction to its feature space and
generates a feature matrix.

The diversity is calculated pairwise using a diversity met-
ric between the feature matrices of two constituent models.
For an ensemble of N models, there are P = N(N−1)

2
number of pairs to compute. The pairwise diversities are
averaged for each model. For example, in a 3-model ensem-
ble (M1,M2,M3), the feature-space diversity is computed
between: (M1,M2), (M1,M3) and (M2,M3). The average
diversity δi for M1 is the average of (M1,M2) and (M1,M3).
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For R2 and Cosine Distance, where higher values indicate
less diversity (inverse relationship), we take its reciprocal to
determine weights. Because the Frobenius Norm and Wasser-
stein Distance increase proportionally as diversity increases,
we use their diversity values directly for weights.

(3) Feature Sparseness. We hypothesize that the sparseness
of feature matrices can determine whether models are focused,
and more likely to yield correct predictions. One of the key ad-
vantages of feature-space diversity over output-space diversity,
is the ability to determine whether a model’s diverse prediction
is useful [48]. A model could provide a diverse prediction
despite not focusing on any specific features in the input. For
example, a model predicting the road sign image in Fig. 6a(i)
could focus on either specific pixels (Fig. 6a(ii), Fig. 6a(iii))
or erroneously consider every single pixel, including irrelevant
pixels in the background (Fig. 6a(iv)).

We quantify a model’s focus on features by measuring the
sparseness σ of its feature matrix - the proportion of values
in a matrix equal to 0 or close to 0 (we count values less than
0.01) over the dimensions of the matrix. The feature sparseness
σ ranges from 0 (least sparse) to 1 (most sparse).

We test our hypothesis by evaluating feature sparseness
against the GTSRB test dataset. For each test image, we mea-
sure an individual model’s feature sparseness and note whether
it was correctly predicted. We conduct this experiment for the
three best individual models for GTSRB (ConvNet, ResNet50,
VGG11). We bin sparseness into 10 logarithmic bins between
0.01 and 1, and report the percent of correct predictions per
bin, as shown in Fig. 6b. We observe that models having
feature matrices with low sparseness are more likely to yield
incorrect predictions. Thus, we reduce the weight of models
that yield very low sparseness (σ < 0.1) feature matrices by
applying a hyperbolic tangent activation, f(σ) = tanh(ασ),
over sparseness σ. This follows the trendline over Fig. 6b.

(i) Input (ii) High

(iii) Moderate (iv) Low

(a) Feature Sparseness Levels
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(b) Correct Predictions vs. Sparseness

Fig. 6: (a) Sparseness example. (b) Correctly predictions of
GTSRB vs Sparseness in log scale. Trendline: y = tanh(20x).

(4) Weight Generation. Eq. (5) shows how the weight ωi

is calculated for the ith-model in the ensemble, where δi is
the feature-space diversity value, σi is its sparseness, and ci
is its prediction confidence. The weight generation formula,
based on the well-established hyperbolic tangent activation
function [49], enables models with greater feature-space diver-
sity, sparseness and prediction confidence to be weighed higher
than other models. Prediction confidence is commonly used

(i.e. typically multiplied) for weight generation in dynamic
weighted ensembles [50–52]. The weight is a product of the
prediction confidence, diversity value, and feature sparseness
(shown empirically fitted in Fig. 6b).

ωi = ciδi tanh(ασi) (5)

(5) Weighted Majority Voting. ReMlX combines the pre-
dictions from each individual model using weighted majority
voting. Votes for each predicted label class are tallied, and
the label class that receives at least 50% of the total votes,
becomes the final result. In the case of pluralities, where a pre-
dicted label class gathers the most votes, yet falls short of the
50% majority threshold, ReMlX considers it a misprediction.
In some safety-critical domains such as AVs, disengagement
and reversion to manual control is preferred over potential
accident-inducing misclassifications [53, 54].

V. EVALUATION

A. Research Questions (RQs)

1) How resilient is ReMlX compared with baselines?
2) What is the runtime overhead for ReMlX?
3) Which XAI technique is most faithful, robust, and

efficient under training data faults?
4) Which feature-space diversity metric for ReMlX is most

effective?
5) How well does ReMlX perform on larger ensembles?

B. Experimental Setup

Datasets. Our evaluation includes three datasets (Table II):
CIFAR-10, GTSRB, and Pneumonia - these are all publicly
available. CIFAR-10 is comprised of about 50,000 photos
organised into ten separate object categories, with 5000 images
in each class. The Pneumonia dataset [55] contains 5,863 X-
ray images of paediatric patients from China. GTSRB and
Pneumonia are both considered safety-critical applications.
Pneumonia datasets are smaller than others because of chal-
lenges in curating high-quality medical images [56]. Across
all datasets, we use the pre-defined training and testing splits.

TABLE II: Image classification datasets and metrics used

Name Dataset Size Task (# Classes) Evaluating

Training Test Metric

CIFAR-10 [57] 50,000 10,000 Objects (10) BA
GTSRB [12] 39,209 12,630 Traffic signs (43) BA
Pneumonia [55] 5,239 624 Chest X-rays (2) F1

Models. We use 9 different models of varying architectures,
outlined in Table III. We selected these 9 models that have
varied layer depths and architectural components, such as
depthwise convolution layers in MobileNet and residual layers
in ResNet. We also use two variants of EfficientNetv2 [58] that
perform better on larger images. Prior work have shown that
these individual models exhibit high accuracy (above 90%)
across the image classification datasets [8]. These models have
been adopted in safety-critical applications such as VGG mod-
els for COVID detection [59] and MobileNets for distracted
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driver detection [60]. Hence, these models serve as a strong
foundation for constructing resilient ensembles.

TABLE III: Neural network architectures used

Name Depth Architecture Summary

ConvNet Moderate 3 Conv + 3 FC + Max Pooling
DeconvNet Moderate 4 Conv + 2 FC w/ 0.5 Dropout
VGG11 Deep 13 Conv + 3 FC + Max Pooling
VGG16 Deep 13 Conv + 3 FC + Max Pooling
ResNet18 Deep 17 Conv + 1 FC + Avg Pooling
MobileNet Deep 27 Conv + 1 FC + Avg Pooling
ResNet50 Deep 49 Conv + 1 FC + Avg Pooling
EfficientNetv2B0 Deep 5 Fused-MBConv + 16 MBConv + 1 FC
EfficientNetv2B1 Deep 5 Fused-MBConv + 16 MBConv + 1 FC

Fault Injection. We utilize the TF-DM fault injector [61] to
inject mislabelling, removal, and repetition faults into training
datasets. Mislabelling faults have a greater influence on cer-
tain label classes than others, while removal and repetition
errors are equally likely to impact any label class. Thus, we
employ asymmetric fault distributions for mislabelling faults
and symmetric distributions for removal and repetition faults.

Using Cleanlab [62], a tool to detect training data faults,
mislabelling fault patterns are extracted from datasets. Mis-
labelling fault patterns resemble confusion matrices, where
each column represent the actual class, each row represents
the predicted class, and each element represents the magnitude
of confusion. TF-DM performs fault injection based on these
extracted fault patterns. Training labels belonging to classes
with a higher confusion are more likely to be replaced.

We inject the three types of training data faults (Sec-
tion II-A), with one fault type and one fault amount per run
- we call this a fault configuration. The fault amounts (10%-
50%) resemble the typical quantities in real datasets.

Ensemble Training. We train each model independently,
on the same pre-defined training split of each dataset. Ensem-
bles are constructed by combining the independently trained
models. We initially consider ensembles of size 3, which is
the minimum number of models required for simple majority
voting. Because we have 9 models, and we select ensembles
of size 3, we have a total of

(
9
3

)
= 84 models. We choose

the most resilient ensemble under each fault configuration and
apply ReMlX on that ensemble.

Baselines. First, we compare ReMlX with the best in-
dividual model that has the highest resilience for a fault
configuration. Then, we compare ReMlX with six state-of-
the-art ensembling techniques, as follows:

1) UMaj, unweighted simple majority [8]. Ensembles
are constructed with individually-trained architecturally-
diverse models - the predictions of each individual
model are combined with simple majority voting.

2) UAvg, uniform average [47]. These are similar to simple
majority ensembles. However, their predictive probabil-
ities are averaged instead and the class with the highest
probability is chosen as the ensemble prediction.

3) S-WMaj, static weighted majority [16]. Models in the
ensemble are weighed according to their prediction

accuracy, across a validation dataset (i.e. a small random
subset of the training dataset withheld during training).

4) D-WMaj, dynamic weighted majority, using stack-
ing [50]. Weights are assigned to predictions by con-
stituent models during inference. We use stacking, where
the predictions of individual models are fed into another
classifier (Logistic Regression model), which decides
the final prediction. Unlike ReMlX, D-WMaj is based
on output-space prediction correctness and prediction
confidence to dynamically determine weights.

5) Bagging [11]. Ensembles are constructed by training the
same ML architecture on subsets of the training dataset
that are randomly sampled with replacement. We set the
bagging percentage to 63% as recommended [11].

6) Boosting, using AdaBoost [10]. We use AdaBoost [10],
an adaptive boosting approach where models of the same
ML architecture are sequentially sequenced to focus on
data instances that are mispredicted by prior models.

ReMlX Configurations. We configure ReMlX to use
Smooth Gradient (SG) as the XAI Technique (we show
why in Section V-E) and Cosine Distance (we show why in
Section V-F). We choose a high value for α (i.e. 20), so that
only explanations with extremely low sparseness are penalized.

Metrics. We use balanced accuracy (BA) [63] instead of
accuracy, as it measures the classification capability for both
balanced and imbalanced multiclass datasets. In imbalanced
datasets, where the number of samples belonging to each
class are unequal, accuracy is a misleading metric as it is
biased towards the performance on overrepresented classes.
BA eludes this case by calculating the recall on each class
separately, and averaging them [63]. For balanced datasets like
CIFAR-10, BA converges to the accuracy [64].

To evaluate Pneumonia, a binary dataset, where false posi-
tives and negatives (i.e. misdiagnosis) are more important than
true negatives (i.e. benign), we employ the F1 Score (F1),
which reports the harmonic mean of the precision and recall.

Experimental Environment. For our experiments, we used
a 64-bit AMD Ryzen Threadripper 3960X 24-Core Processor
with 256GB RAM and three NVIDIA RTX 3070 GPUs. In
total, training and inference time took 16 days of computation
time. Each ensembling approach was run 20 times per fault
configuration to reduce its variance and obtain tight bounds
within a 95% confidence interval. Models in the ensembles
are run in parallel during inference.

C. RQ1: Resilience of ReMlX vs Baselines

We compare the resilience of ReMlX with the baselines,
against randomly injected training data faults using TF-DM.
While ReMlX can be applied to ensembles of any size, we
focus initially on models of size 3, and apply our technique
on the most resilient three model ensemble, as explained in
Section V-B. Similarly, all other ensembling baselines utilize
three models. Overall, we find that ReMlX is 12% more
resilient than DW-Maj, 16% more than bagging, 21% more
than S-WMaj, 24% more than UMaj and UAvg, 28% more
than boosting and the best individual model.
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Fig. 7: BA, F1 of ReMlX vs baselines across datasets and fault
types. Error bars indicate 95% CI. Y-axis begins at 0.5. ReMlX
is more resilient than other baselines across configurations.

By Fault Amount. First, we evaluate the resilience of
ReMlX across different fault amounts (0%-50%), which re-
semble observations in real datasets (Table I). We randomly
inject varying amounts of mislabelling faults into the GTSRB
training dataset, following their extracted fault distributions.
We then retrain the best ensemble on the dataset for each fault
amount, and measure the balanced accuracy (BA) of ReMlX
along with the baselines. We show the results in Fig. 7a.

We observe that ReMlX has a higher resilience compared
to baselines across fault amounts, with the gap in resilience
increasing as the fault amount increases. D-WMaj and bagging
are the most resilient baseline techniques across fault amounts.
While D-WMaj’s dynamic weights provides the strongest
alternative, ReMlX is still able to outperform it under all
fault amounts (≥ 10%). We see that ReMlX is able to
correctly predict 1-correct cases that D-WMaj fails to do,
owing to D-WMaj’s final decision classifier limited to the
output-space (i.e. constituent model’s prediction probabilities).
Bagging also performs well under higher fault amounts - its
constituent models trained on random subsets of the training
dataset yields higher resilience compared to other baselines.
However, ReMlX consistently outperforms bagging across all
fault amounts, as it has the same limitation as D-WMaj.

Techniques such as UMaj, UAvg and S-WMaj only have
high BA at golden and 10% mislabelling. In particular, UMaj
and UAvg have similar BA across fault amounts. Since most
models tend to predict labels with high prediction probability,
averaged voting did not play a deciding factor in most ensem-
ble outcomes. S-WMaj underperforms at high fault amounts
as the model weights are statically calibrated during training.
These static weights are often suboptimal during inference, as
ensemble diversity fluctuates across input instances.

Most of the ensembling baselines outperform the best
individual model, with the exception of boosting. Boosting
is even outperformed by the best individual model, under
higher fault amounts (≥ 30%). This is due to boosting’s
sequential learning pattern, where subsequent models focus
on mispredicted samples by prior models, which increases the
ensemble’s suspectibility to training data faults.

We further examine how effectively ReMlX provides re-
silience compared to the baseline ensembling techniques
(UAvg, S-WMaj, D-WMaj) in Fig. 7b that use three
architecturally-diverse constituent models. First, we count the
proportion of 1-correct cases that are correctly classified by
each ensembling technique. This shows the improvement over
UMaj (simple majority voting), which is unable to correctly
classify 1-correct. Then, we count the proportion of 2-correct
cases misclassified by each ensembling technique. Ensembling
techniques may misclassify 2-correct cases, when simple ma-
jority voting is no longer used. We can see ReMlX is able to
correctly predict a large proportion of 1-correct cases that are
mispredicted by the other ensembling baselines (i.e. UAvg),
while minimizing mispredictions on 2-correct cases.

By Fault Type. Next, we evaluate the resilience of ReMlX
across different fault types. Earlier, we considered mislabelling
faults. We randomly inject varying amounts of removal and
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repetition faults into the GTSRB training dataset, and repeat
the same experiment. We show the results in Figs. 7c and 7d.

We observe that ReMlX outperforms all other baselines
for removal and repetition faults as well. ReMlX is most
effective against mislabelling and removal faults, where the
gap in resilience with baselines is widest. For repetition faults,
ReMlX displays similar resilience as two ensembling baselines
(S-WMaj and D-WMaj), while still outperforming the other
baselines. Unlike mislabelling and removal faults, there is
less variation in prediction diversity among test inputs for
repetition faults. This is likely due to repetition fault’s smaller
impact on trained models. However, weighted ensembles
continue to yield more correct predictions than unweighted
ensembles, owing to the diversity among constituent models.

By Dataset. Finally, we evaluate the resilience of ReMlX
across different datasets (CIFAR-10 and Pneumonia) by re-
peating the previous experiments. We focus our analysis
on 30% mislabelling as it represents the average scenario
for training data faults. We measure the BA for CIFAR-10
(Fig. 7e) and F1 for Pneumonia (Fig. 7f), and report the
performance of each technique with and without mislabelling.

When examining the results for CIFAR-10 and Pneumonia,
we make similar observations in trends to GTSRB. ReMlX
continues to outperform other baseline techniques, and D-
WMaj and Bagging are the best alternative baselines. There
is no significant difference between ReMlX’s resilience in
GTSRB and CIFAR-10. However, ReMlX has a lower gap in
resilience between D-WMaj for Pneumonia. When models are
trained under mislabelling, models are less likely to focus on
important features, especially in high resolution images found
in Pneumonia. The lack of focus yields low feature sparseness,
limiting the model’s contribution to ensemble diversity.

With Multiple Fault Types. In addition to evaluating
ReMlX against individual fault types, we also consider com-
binations of fault types. Since repetition faults had a smaller
impact on resilience, we focus on combinations of mislabelling
and removal faults. We inject (0% to 50%) of a combination
of mislabelling and removal, with each fault type at equal
amounts. For instance, we inject 15% mislabelling and 15%
removal for 30% faults. We show the results for GTSRB
(Fig. 7g) and Pneumonia (Fig. 7h). ReMlX behaves similarly
relative to baselines in GTSRB and Pneumonia when trained
with multiple faults compared to mislabelling faults only. A
steeper drop in reliability is observed at fault amounts exceed-
ing 30% as the effects of the fault types are compounded.

By Image Size. Because ReMlX relies on the feature space
of an input image, we evaluate ReMlX on different image
sizes to determine whether the image size has an impact
on resilience. We compare the results for CIFAR-10 where
images are sized 32× 32 to CIFAR-10-128 [65], a dataset of
automatically resized CIFAR-10 images of size 128×128. The
ensemble with the highest average resilience for CIFAR-10
was {ConvNet, ResNet50, VGG11} whereas for CIFAR-10-
128, it was {MobileNet, EfficientNetv2B0, EfficientNetv2B1}.

We compare the resilience of ReMlX under different image
sizes against its most competitive baseline, D-WMaj, under

mislabelling and removal faults (Figs. 7i and 7j). We excluded
repetition faults here due to the limited impact on resilience.
We find that the BA drops more quickly when training data
faults are present on datasets with larger images due to
the increased risk of overfitting. Nevertheless, ReMlX still
outperforms D-WMaj because it is able to effectively navigate
through ensemble disagreements, which occur more frequently
when inferring larger images under training data faults.

Observation 1 ReMlX offers the highest resilience compared
to the baselines across the board, and has the highest effec-
tiveness against mislabelling and removal faults.

D. RQ2: Runtime Overhead of ReMlX

In this RQ, we measure the runtime (inference) overheads
of ReMlX and other ensembling baselines over the best
individual model, across each test dataset, averaged across 20
runs each. We focus on the inference overhead over individual
test inputs as ReMlX’s dynamic weight generation approach
is deployed during inference. In certain safety-critical applica-
tions such as AVs, there are bounds on the inference time such
that it should not exceed the safe disengagement time, in order
to enable a timely reversion to manual control if needed [66].

Fig. 8 shows the results. We find that ReMlX incurs 1.15×
the overhead of D-WMaj, 2× that of boosting, 4.5× that of
UMaj, UAvg, S-WMaj, Bagging, and 6× that of the best
individual model. While ReMlX incurs the largest runtime
overhead compared to other baselines due to the cost of
running the XAI module to extract the feature space, it is the
most resilient. For instance, while ReMlX is 15% slower than
D-WMaj, it is also 12% more resilient on average. Breaking
down ReMlX’s overhead in our workflow Fig. 5, we find that
ReMlX spends 15% on ensemble prediction, while spending
67% on extracting the features (Step 1) and 18% on computing
the diversity and generating weights (Steps 2-5).

We analyze the effect of image size on ReMlX’s overhead.
ReMlX’s overhead for CIFAR-10 (128×128) is 1.63× higher
than CIFAR-10 (32× 32). Larger images slow down both the
ensemble inference (without ReMlX) and the XAI module.

Most importantly, the average and worst-case runtime over-
head of ReMlX for time-sensitive safety-critical applications
such as GTSRB is 0.07 seconds and 0.32 seconds respec-
tively, which is well within the AV industry standard for
disengagement time at 0.83 seconds [66]. Among all datasets,
Pneumonia has the highest runtime overhead as it handles
the largest image sizes (1024× 1024). Its average and worst-
case overheads are 0.31 seconds and 0.46 seconds respectively.
Overall, ReMlX’s overhead is still within 0.5 seconds, which
is an acceptable latency for many applications, e.g., in virtual
reality (VR) such as telesurgery before VR sickness is encoun-
tered [67]. We observed similar trends in runtime overheads
across all four datasets, including CIFAR-10-128.

Observation 2 ReMlX incurs 15% higher performance over-
head over its best alternative, D-WMaj, dynamically weighted
using stacking.

9



CIFAR-10
32x32

CIFAR-10
128x128

GTSRB Pneumonia

Dataset

0
1
2
3
4
5
6
7
8
9

Re
la

tiv
e 

Ru
nt

im
e 

Ov
er

he
ad

UMaj
UAvg
S-WMaj
D-WMaj
Bagging
Boosting
ReMlX
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E. RQ3: Which XAI Technique?

As explained in Section II-C, we seek XAI techniques
that are faithful, robust, and efficient. We consider five XAI
techniques (Section Section II-C): Counterfactual Explanations
(CFE), Integrated Gradients (IG), LIME, Smooth Gradients
(SG), and SHAP. We consider both model-agnostic (CFE,
LIME, SHAP) and model-dependent techniques (IG and SG).

CIFAR-10 GTSRB Pneumonia
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ith

fu
ln

es
s C

or
re

la
tio

n

CFE
IG
LIME
SG
SHAP

(a) Faithfulness, Golden

CIFAR-10 GTSRB Pneumonia
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ith

fu
ln

es
s C

or
re

la
tio

n

CFE
IG
LIME
SG
SHAP

(b) Faithfulness, Mislabelling 30%

CIFAR-10 GTSRB Pneumonia
Dataset

5

0

5

10

In
st

ab
ilit

y 
(L

og
 R

IS
)

CFE
IG

LIME
SG

SHAP

(c) Robustness, Golden

CIFAR-10 GTSRB Pneumonia
Dataset

5

0

5

10

In
st

ab
ilit

y 
(L

og
 R

IS
)

CFE
IG

LIME
SG

SHAP

(d) Robustness, Mislabelling 30%

CIFAR-10 GTSRB Pneumonia
Dataset

0

1

2

3

4

5

6

7

Ru
nt

im
e 

(s
)

CFE
IG
LIME
SG
SHAP

(e) Absolute Runtime per Test Input

Fig. 9: Comparison of XAI Techniques with golden and 30%
mislabelling. (a, b) Faithfulness. Higher correlation is better.
(c, d) Robustness using Log Relative Input Stability. Lower is
better. (e) Runtime. Lower is better. Error bars show 95% CI.

We evaluate each XAI technique to determine which tech-
nique yields the best explanations of ML models, when trained

with golden and 30% mislabelling - we find similar results for
other fault configurations. We apply each XAI technique on
the 9 individual models separately. The XAI evaluation metrics
are then averaged across all 9 models. We repeat this for the
mislabelled cases, across all three datasets.

For faithfulness, we use faithfulness correlation [68], where
a higher value indicates higher faithfulness. We calculate the
faithfulness correlation for each sample in the test dataset
and report the averaged values for golden (Fig. 9a) and
mislabelling (Fig. 9b). We find CFE and SG have the highest
faithfulness, while IG has the lowest faithfulness. SHAP ranks
in the middle among techniques. LIME’s faithfulness is most
negatively impacted by mislabelling, as it struggles to fit its
surrogate model under training data faults.

For robustness, we use Relative Input Stability [69], which
is applied inversely, so a lower value indicates greater stability.
Since Relative Input Stability is unbounded, we take its log and
plot a boxplot of the stability values for golden (Fig. 9c) and
mislabelling (Fig. 9d). SG has the lowest Relative Input Sta-
bility, indicating its high stability. SG mitigates the noise from
background elements. The stability of CFE is most impacted
by faulty training data, while other techniques remained stable.
Even without faults, CFEs are most unstable as it performs a
heuristic search for counterfactuals that can differ per run.

For efficiency, we measure the runtime in seconds, for a
single XAI technique to run on a test input. We repeat this for
each sample in the test dataset and report the averaged runtime
in Fig. 9e. While IG has the lowest overall runtime, SG comes
second. Model-dependent techniques (IG, SG) are faster than
model-agnostic techniques (CFE, SHAP, LIME). IG and SG
use differentiation (quickly computable), while SHAP incurs
exponential runtime to generate all feature combinations, CFE
relies on heuristic search and LIME needs to fit surrogates.

Overall, SG is the XAI technique with the highest faithful-
ness and robustness, and incurs the second lowest runtime.

Observation 3 Smooth Gradients (SG) is the most well-suited
XAI technique for ReMlX.

F. RQ4: Which feature-space diversity metric?

We compare the four feature-space diversity metrics –
R2, Cosine Distance, Frobenius Norm, Wasserstein Distance
(shortlisted in Section II-D) – to determine which is most ef-
fective for ReMlX. An effective feature-space diversity metric
maximizes resilience in ensembles while incurring the least
runtime. We perform an experiment where we apply each of
the four diversity metrics to ReMlX, with SG as the XAI
technique, and measure their BA. Fig. 8 shows the results for
GTSRB against varying amounts of mislabelling. We make
similar observations for other fault configurations and datasets.

Despite observing small variations (within 5%) in resilience
when adapting ReMlX with different diversity metrics, R2 and
Cosine Distance fares generally better than Frobenius Norm
and Wasserstein Distance. R2 and Cosine Distance are scaling-
invariant, so they focus on the relative dissimiliarity of the
feature matrix elements, and are independent of their absolute
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Fig. 10: BA when using different feature-space diversity met-
rics with ReMlX, against different amounts of mislabelling.
Error bars show 95% CI. Y-axis starts at 0.6.

magnititudes. In particular, Frobenius Norm is the least effec-
tive metric for ReMlX as it amplifies elemental magnitude
differences due to its squared distance computed between
feature matrix elements - a more pronounced observation at
higher fault amounts. While R2 and Cosine Distance are both
effective, Cosine Distance’s implementation is much faster
than R2. On average, Cosine Distance takes 0.3 milliseconds,
while R2 takes 3 milliseconds, equating to a 10× speedup.
This makes Cosine Distance a better metric for ReMlX.

Observation 4 Cosine Distance is the most effective feature-
space diversity metric for ReMlX.

G. RQ5: ReMlX vs Ensemble Size?

Previously, we focused our evaluation on ensembles of
three models only. However, some baselines such as boosting
perform better when more constituent models are present [70].
We evaluate and compare the resilience of ReMlX against the
ensembling baselines, at different ensemble sizes (3, 5, 7).

We show the results for GTSRB at golden (Fig. 11a) and
30% mislabelling (Fig. 11b). Similar results were found for
other datasets and fault configurations. We find ReMlX has the
highest resilience when the ensemble size is 5 models, which is
also the case for D-WMaj. This is because ensemble resilience
tends to saturate at 5 models, as also observed in prior
work [8]. Interestingly, for S-WMaj, its resilience drops as
the ensemble size increases. This is because static weights are
inflexible to handle disagreements between models, even un-
derperforming uniform weights. In larger ensembles, the like-
lihood of disagreements between constituent models increases,
requiring a more dynamic approach for handling diversity (i.e.
dynamic weights). No significant differences were observed in
the resilience of other baselines across ensemble sizes. Overall,
ReMlX still maintains a higher resilience compared to the
baselines across different ensemble sizes.

Observation 5 ReMlX has the highest resilience across dif-
ferent ensemble sizes compared to the baselines.

VI. DISCUSSION

Threat to Internal Validity. We assume that the labels in
the test dataset correspond to the ground truth, although this
may not consistently hold due to faults in the test data. Similar
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Fig. 11: BA of ReMlX vs baselines for GTSRB under (a)
golden and (b) 30% mislabelling. Error bars indicate 95% CI.
Y-axis begins at 0.6.

to software engineering, one does not typically assume that
both a program and its tests contain faults [71, 72].

Threats to External Validity. We evaluated ReMlX and
other approaches separately against each fault type. In practice,
datasets may contain multiple fault types. Evaluating ReMlX
against multiple fault types is a direction for future work.

We use TF-DM to evaluate ReMlX and the baselines
against training data faults. TF-DM relies on Cleanlab [62]
to accurately extract mislabelling fault patterns from datasets.
Since Cleanlab utitilizes statistical methods to identify misla-
belled data, its inferred mislabelling patterns may differ from
the actual fault patterns present in the dataset due to false
positives and false negatives. We mitigate this risk by raising
the reporting confidence threshold in Cleanlab, and manually
verifying the samples of reported mislabelling.

Threats to Construct Validity. While we rely on XAI
techniques to generate a faithful representation of the feature
space, XAI techniques may not always provide a faithful ex-
planation. We mitigate this risk by evaluating the faithfulness
and robustness of XAI techniques, and carefully choosing a
feasible XAI technique based on this critera. We also manually
inspect the visual heatmaps of the feature matrices.

Applicability to Other ML Tasks and Data Modality.
While we demonstrate ReMlX’s functionality on image clas-
sification datasets, ReMlX could also be applied to other ML
tasks such as text and tabular data. LIME, SHAP and Inte-
grated Gradients are also applicable to text and tabular data.
However, the XAI techniques would generate 1-D vectors of
influence scores on the final prediction instead of 2-D vector,
which would require new (vector-based) diversity metrics.

Combination with Other Training Data Fault Tolerance
Strategies. ReMlX is one solution to tolerate the presence of
training data faults, which we evaluate as an improvement
over simple majority ensembles. One also has the option
of applying data cleaning techniques (i.e. using Cleanlab
to partially remove mislabelled data), or leveraging robust
training techniques on individual models. Evaluating ReMlX
in concert with other strategies is an avenue for future work.

Optimizations to Runtime Overhead. Shown in Sec-
tion V-D, post-hoc XAI is the major source of ReMlX’s
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overhead. We discuss three optimizations: more efficient post-
hoc XAI, ante-hoc techniques and quantized models.

Faster post-hoc XAI techniques such as FusionGrad [73]
and AdaptGrad [74] have been studied. These techniques
improve upon Smooth Gradients by reducing model parameter
perturbations needed to generate robust explanations. How-
ever, such optimized techniques sacrifice faithfulness [44].

Ante-hoc techniques [36] avoid a separate XAI step after
inference (see Section II-C). Self-Explaining Neural Net-
works [75] is an example anti-hoc technique, successfully
applied for image classification. Vision transformer models
(ViTs) [76] intrinsically incorporate attention layers, which can
represent the feature space. However, ante-hoc techniques and
attention mechanisms require more trained parameters, thus,
occupying a higher memory footprint [77]. Further, they slow
down inference for all test inputs [78], not only those with
disagreements like in ReMlX. Additionally, adapting models
for ante-hoc explainability by modifying network architectures
can degrade predictive capability [78].

Quantized models can improve the efficiency of ensemble
inference and XAI techniques by shortening bit widths to rep-
resent model parameters. Shortened bit widths have negligible
impact on explainability in quantized models but they can
diminish the predictive capability of models [79].

Example of Applying ReMlX on ViTs. Suppose an ensem-
ble of independently trained ViTs is constructed as shown in
Fig. 12. A ViT consists of a module to produce patches of the
input image, followed by a transformer encoder with a multi-
head attention module, and a multi-layer perceptron (MLP)
head [76]. To apply ReMlX, we take the attention scores
from the (1) multi-head attention layer, and (2) apply diversity
metrics (Section II-D) to compare attention scores between
ViTs. Since ViTs intrinsicly incorporate attention in their
architectures, a separate post-hoc XAI step is unnecessary.
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Fig. 12: Workflow of ReMlX applied on an ensemble of VITs.

VII. RELATED WORK

We classify related work into two categories: (1) statically
weighted ensembles, and (2) dynamically weighted ensembles.

Statically-weighted Ensembles. Most ensembles that run
multiple models in parallel (bagging) are combined through
unweighted majority voting [80]. Weighted ensembles can
improve accuracy for datasets with small quantities of label
noise and unbalanced classes [13].

Iqball et al. [15] introduce a weighted ensemble where
weights are calculated based on the predictive capability of
each model. Models are assigned a static weight equal to
their relative accuracy improvement over the lowest accuracy

model. While their work considers a model’s global predictive
capability, we focus on local classification of inputs.

Gao et al. [81] propose safety-aware weighted ensembles
for traffic sign recognition. By conducting a failure modes and
effects analysis, they generate a severity matrix and compute
misclassification probabilities. The analysis is summarized and
passed to a large language model, which generates static
safety-aware weights. Unlike their work, we do not require a
manual failure analysis or the use of a large language model.

Dynamically-weighted Ensembles (DWEs) have been pro-
posed as an alternative to statically-weighted ensembles to
handle unseen inputs, in datasets with label noise [14, 82],
imbalanced classes [83], and missing labels [84].

Ren et al. [14] propose DWEs based on test input fea-
tures during inference. They present an algorithm to calculate
dynamic weights based on the eigenvalues of the confusion
matrix of each model, and found DWEs outperform statically-
weighted ensembles by suppressing misclassifications against
certain classes of inputs. In contrast, our technique is cus-
tomized for each test input rather than label classes.

Zhang et al. [83] apply DWEs on class-imbalanced datasets
to improve classification accuracy on minority classes since
statically-weighted ensembles bias predictions towards ma-
jority classes. Constituent models are trained on distinct
combinations of samples from majority and minority classes.
At inference, dynamic weights are generated based on input
feature similarity to training samples of the minority class.
Unlike their work, our solution exploits feature diversity
among models rather than training samples.

Catto et al., [84] apply DWEs towards missing value
imputation, where training samples with missing labels are
approximated by similar samples. DWEs enable the best
imputation technique to be applied for each training sample.
In contrast, we apply DWEs directly on test predictions, rather
than on training data, so even pre-trained models can benefit.

VIII. CONCLUSIONS

ML applications require accurate predictions, especially in
safety-critical systems. Training data faults can negatively
impact the classification ability of individual ML models.
Ensembles have been presented as a promising solution to
tolerate the presence of training data faults during infer-
ence. However, unweighted ensembles are still prone to mis-
classifications, where incorrect classifiers outvote the correct
classifiers. We propose ReMlX, which deploys dynamically-
weighted ensembles based on the feature-space diversity be-
tween constituent models using local post-hoc explainable AI
techniques. ReMlX achieves 12% higher resilience than the
best alternative approach, dynamic weighted ensembles using
stacking, while incurring 15% higher runtime overhead.
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