ReMIX: <u>Re</u>silience for <u>ML</u> Ensembles using <u>X</u>AI at Inference against Faulty Training Data

Abraham Chan,

Arpan Gujarati, Karthik Pattabiraman, Sathish Gopalakrishnan

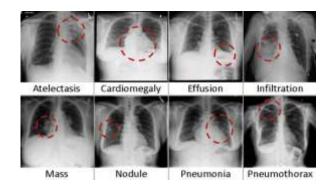
THE UNIVERSITY OF BRITISH COLUMBIA

Training Data Faults in Practice

70% of Lyft dataset missing, mislabelled [Kang et al, 2022]

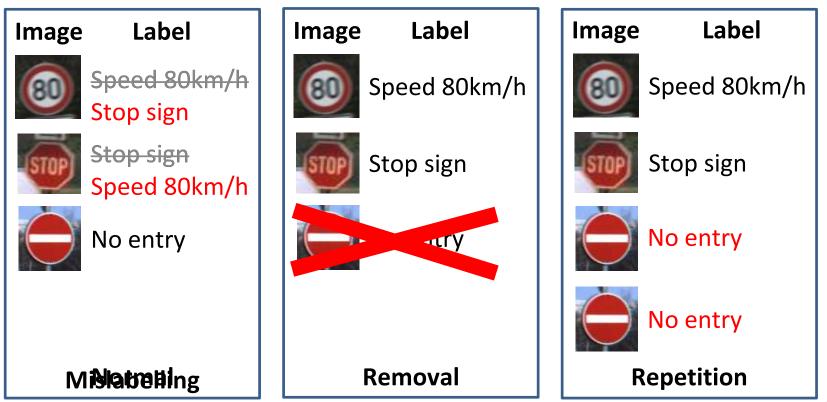
Autonomous Vehicles

20% of ChestX-ray mislabelled [Tang et al, 2021]

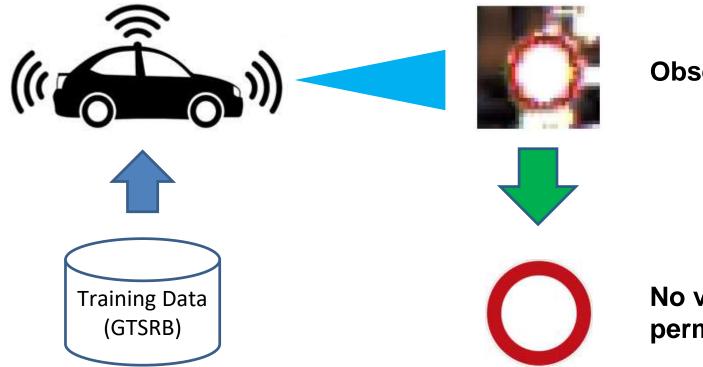


Healthcare

Training Data Faults



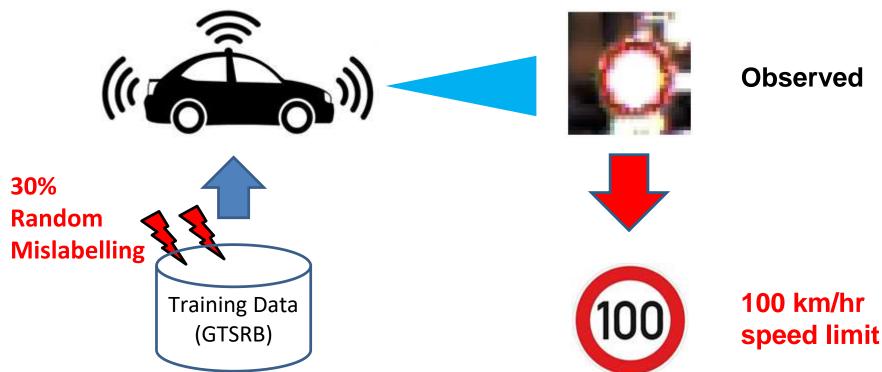
Autonomous Vehicle Example



Observed

No vehicles permitted

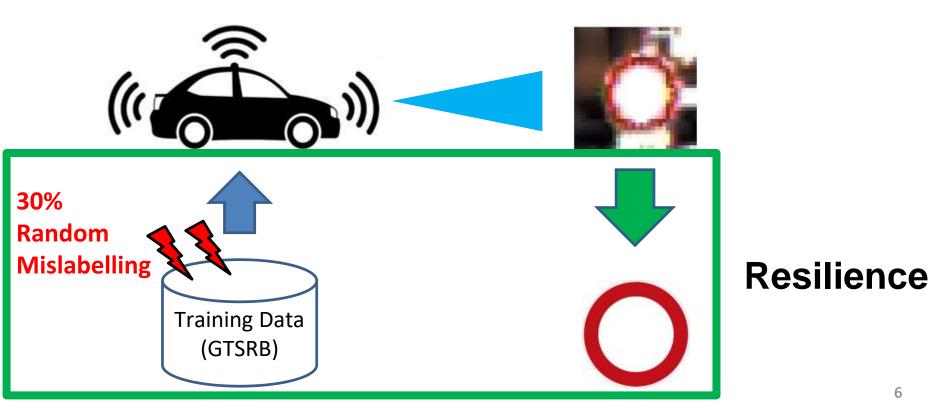
Random Mislabelling



Observed

6

Resilience against Faulty Training Data



How to mitigate training data faults with minimal human effort?

- 1. Label Correction
- 2. Knowledge Distillation
- 3. Robust Loss
- 4. Label Smoothing
- 5. Ensembles

More Practitioner Effort

Less Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications [Chan, DSN'22] 7

How to mitigate training data faults with minimal human effort?

- 1. Label Correction
- 2. Knowledge Distillation
- 3. Robust Loss
- 4. Label Smoothing
- 5. Ensembles

Less Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications [Chan, DSN'22] 8

More Practitioner Effort

How to mitigate training data faults with minimal human effort?

1. Label Correction

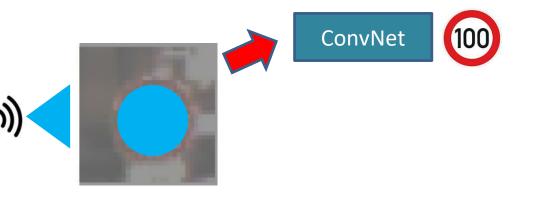
Knowladge Distillation

Our Solution: Building Resilient Ensembles

4. Label Smoothing

5. Ensembles

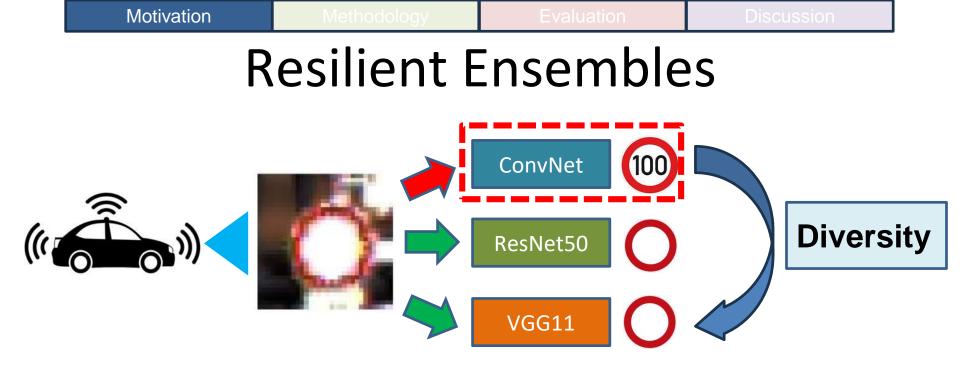
Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications [Chan, DSN'22] 9



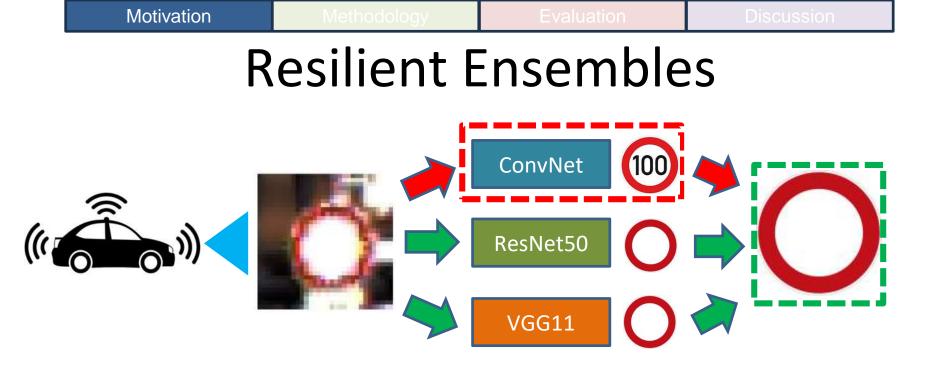
(()

Motivation Methodology Evaluation Discussion Besilient Ensembles ConvNet 000 Image: ConvNet 000 000 Image: ConvNet 000 000 Image: ConvNet 000 000

VGG11

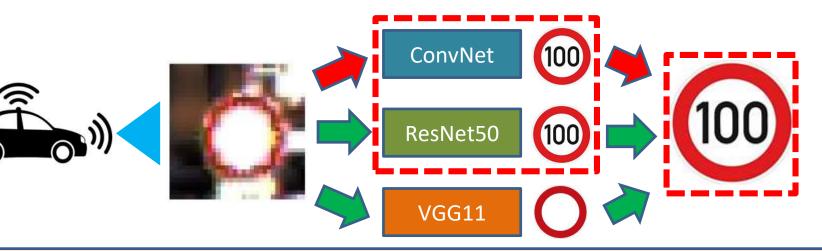


Our Prior Work: Understanding the Resilience of Neural Network Ensembles against Faulty Training Data **[Chan, QRS'21]**

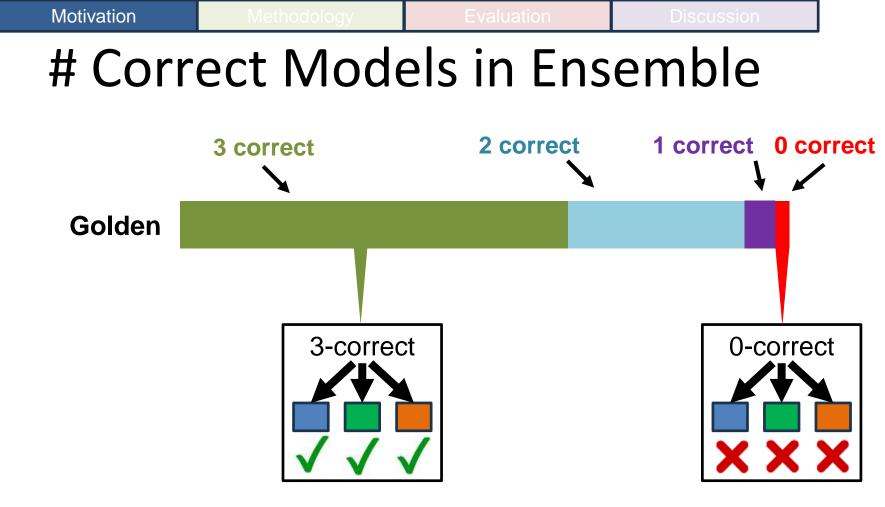


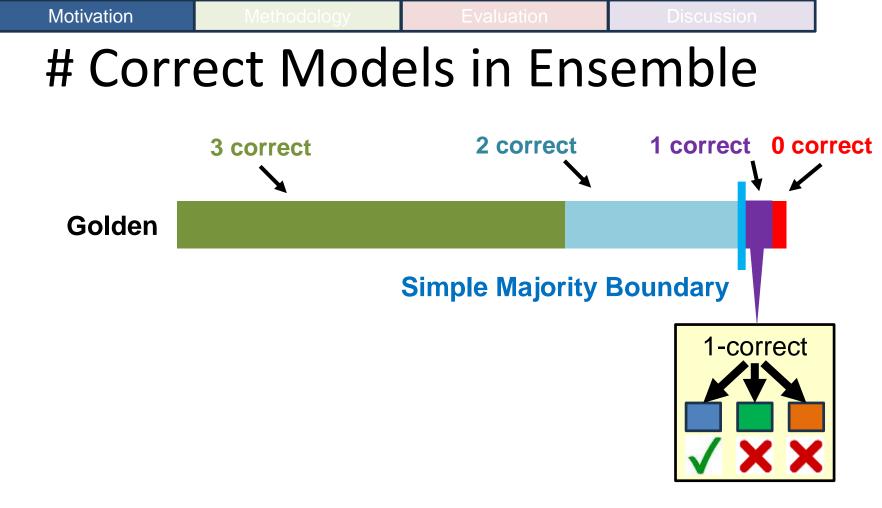
Our Prior Work: Understanding the Resilience of Neural Network Ensembles against Faulty Training Data **[Chan, QRS'21]**

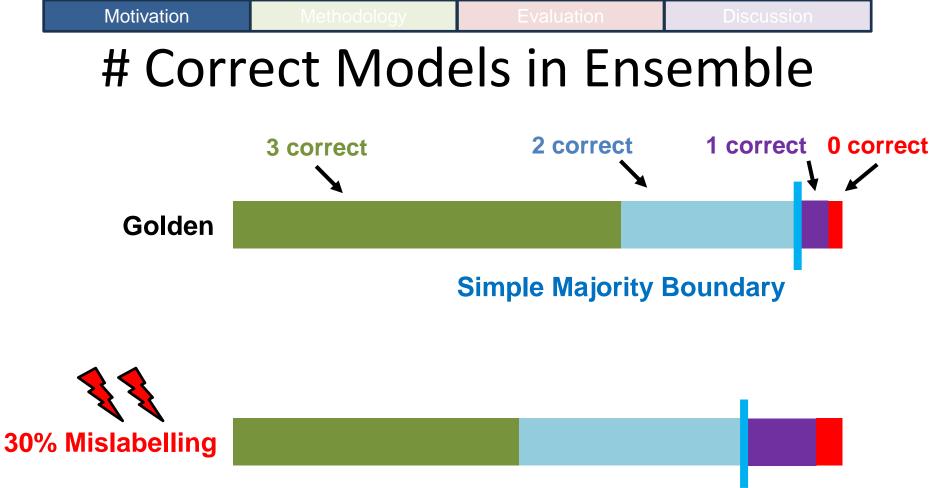
MotivationMethodologyEvaluationDiscussionWhen Ensembles Misclassify?

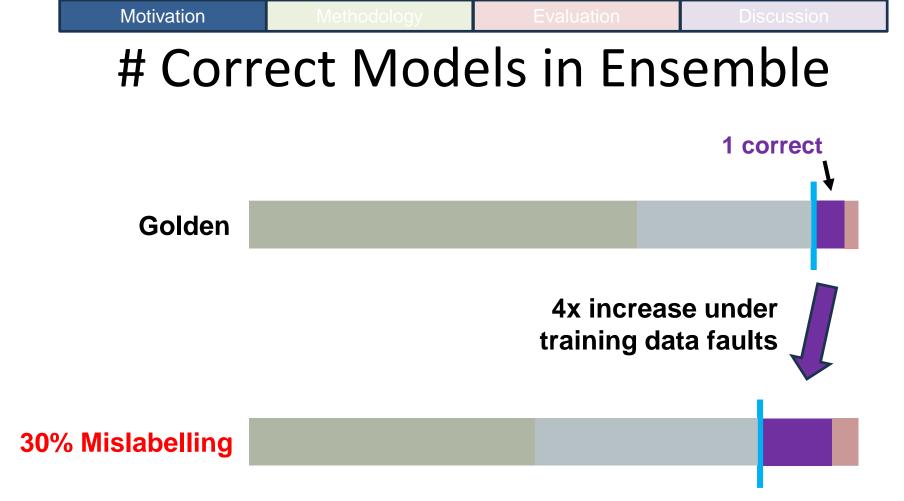


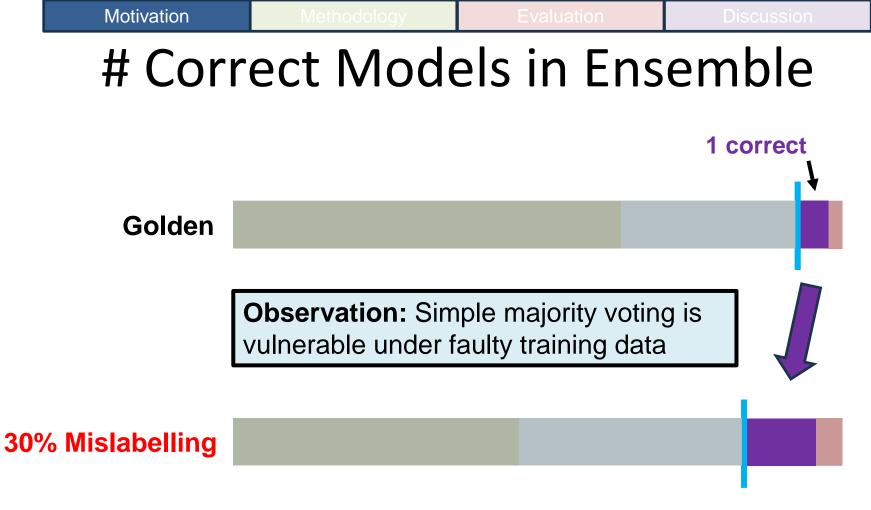
This paper's contribution: ReMIX reduces ensemble misclassifications

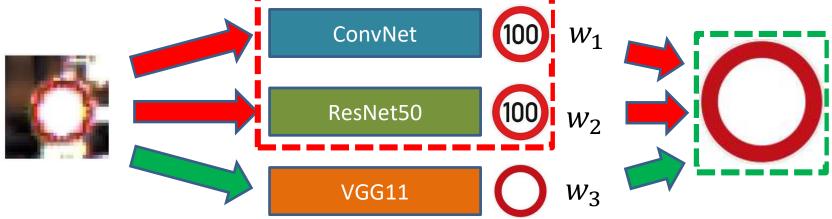






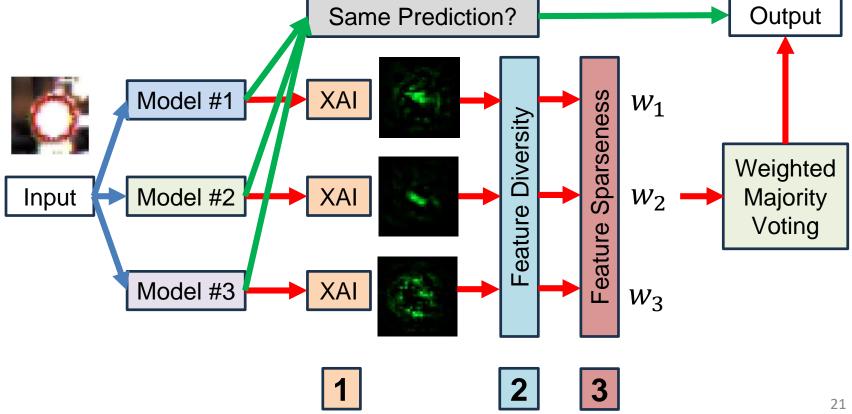


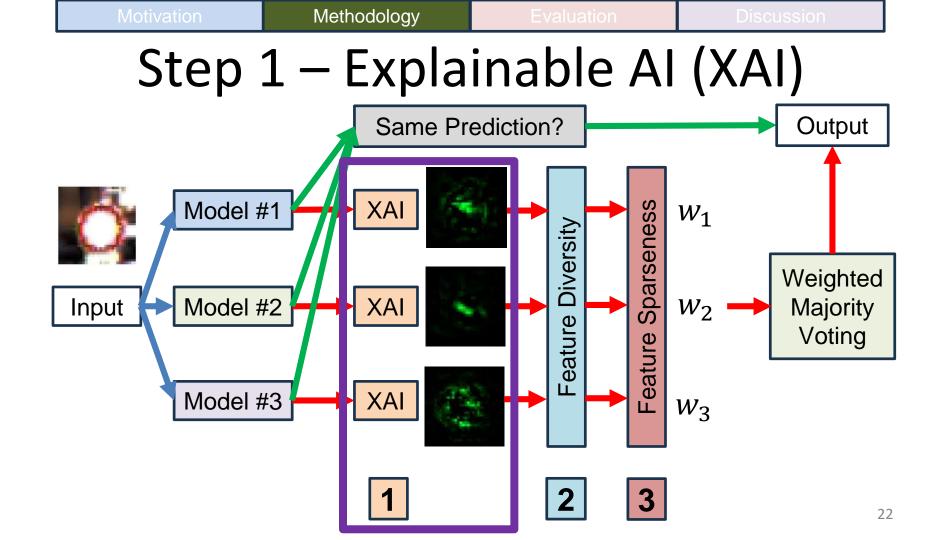


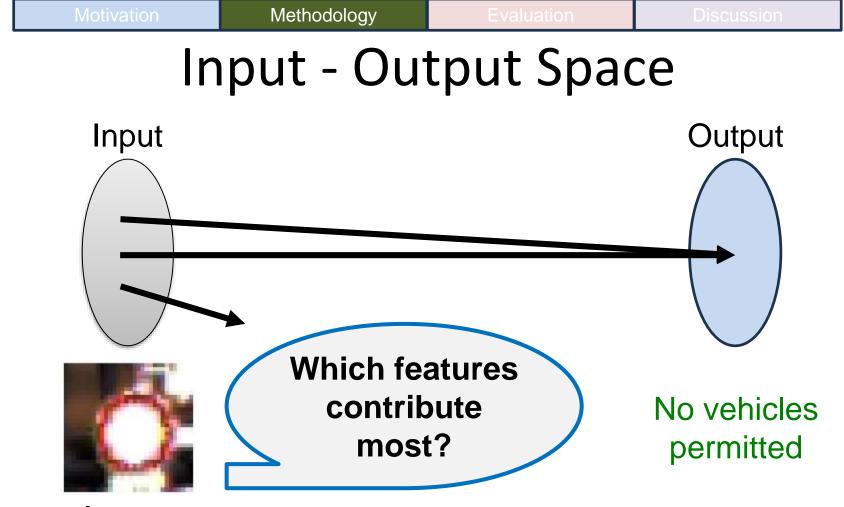


How to determine weights? **ReMIX** uses Feature Space Diversity!

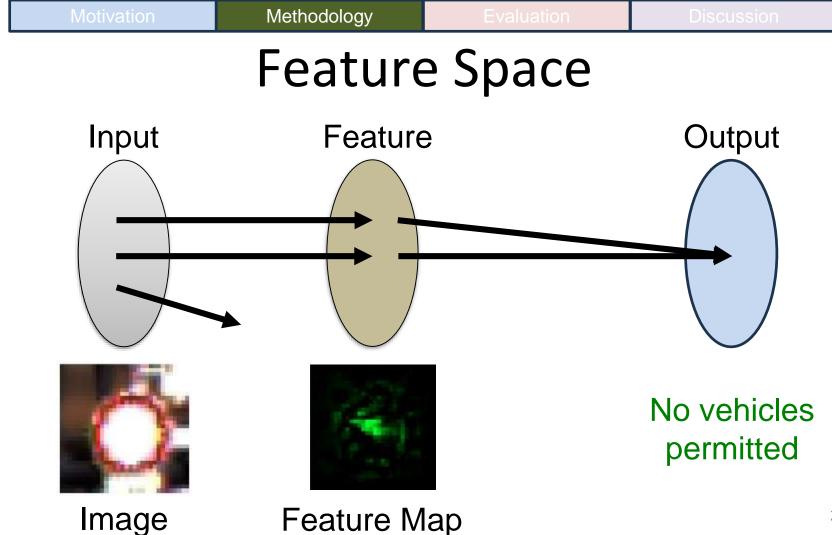
$$w_1, w_2 < w_3$$



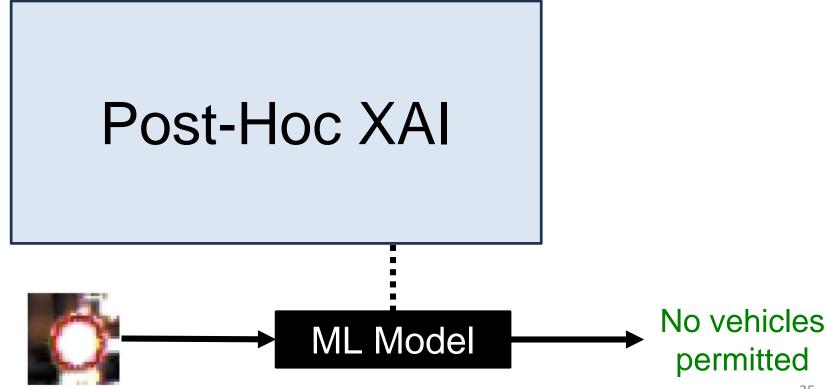




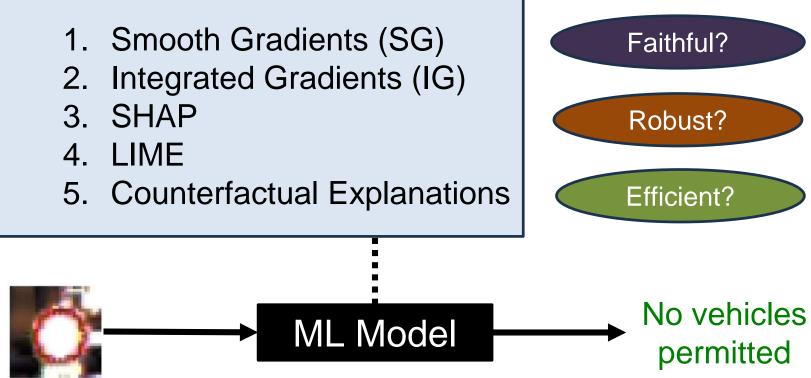
Image



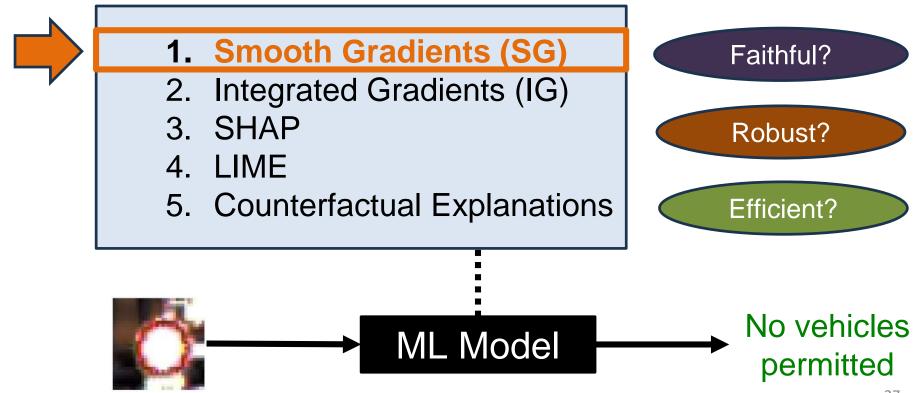
Post-Hoc Local Explainable AI (XAI)

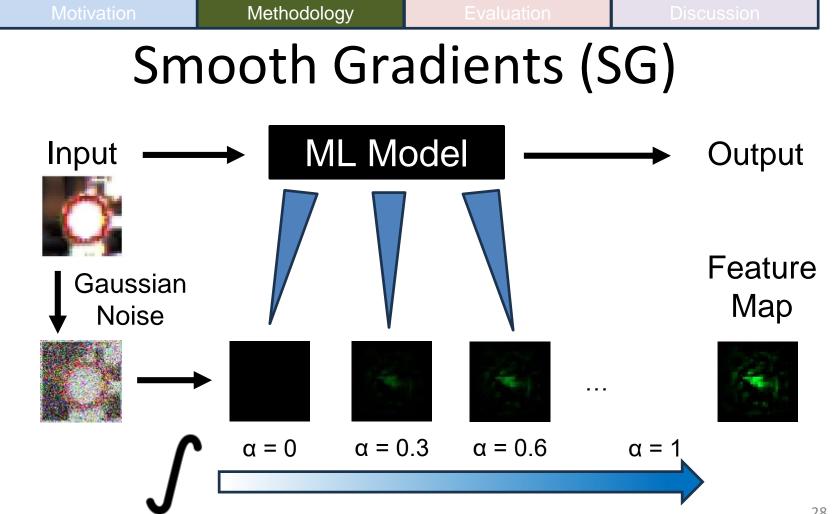


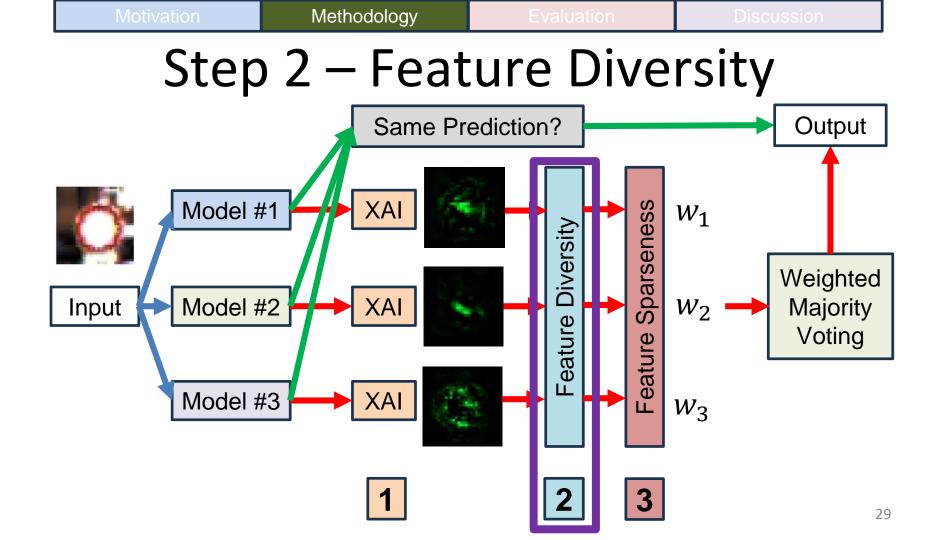
Post-Hoc Local Explainable AI (XAI)



Post-Hoc Local Explainable AI (XAI)



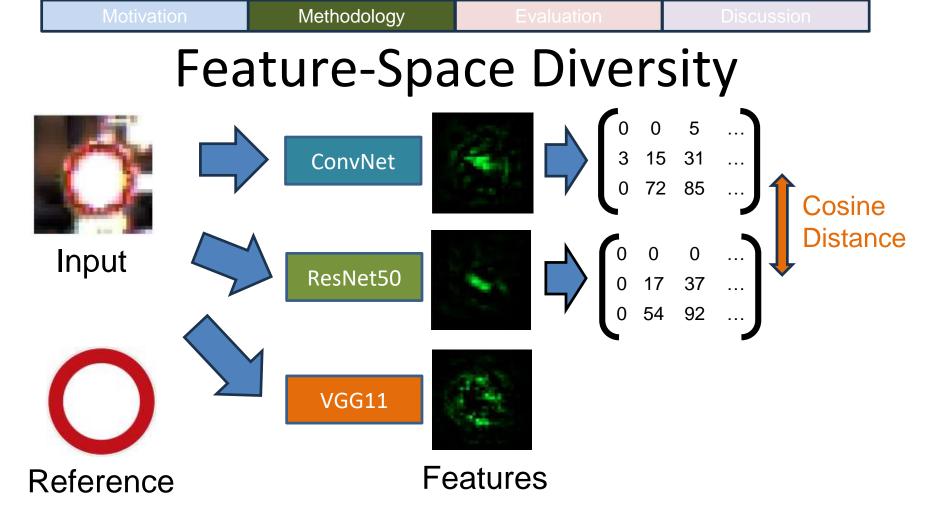




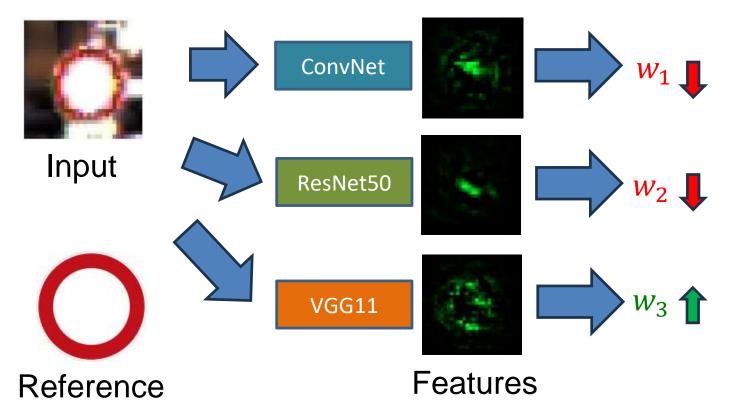
Feature Diversity using SG

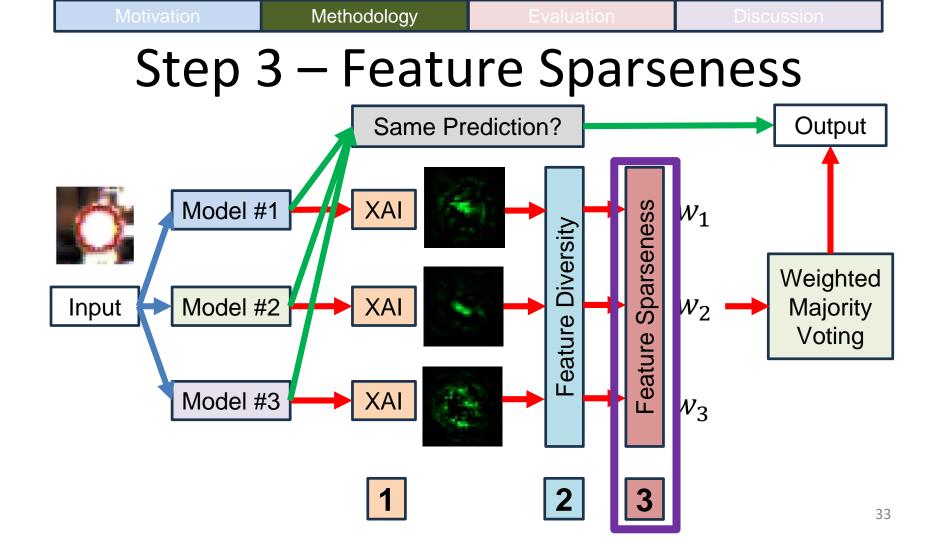
Methodology





Dynamic Weights using Feature Diversity





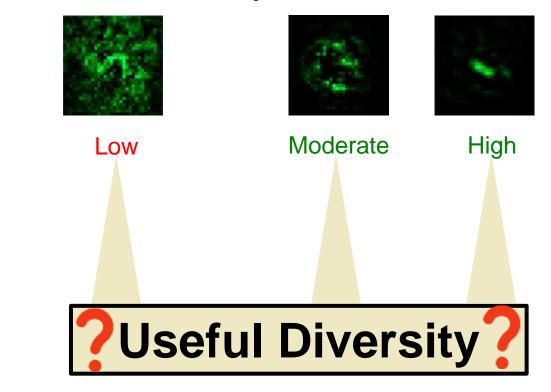
Methodology

Evaluation

Discussior

Feature Sparseness

Input



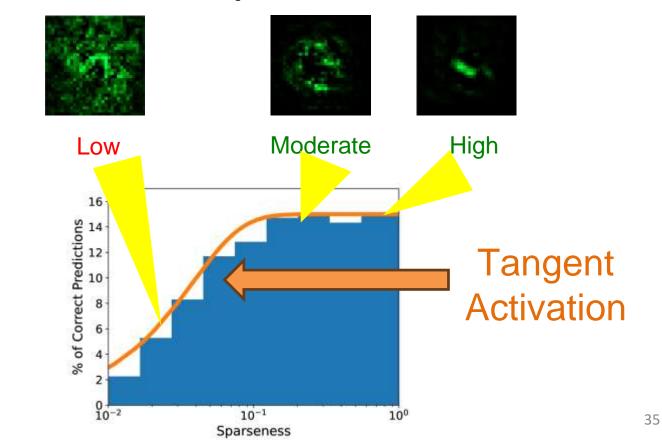
Methodology

Evaluation

Discussion

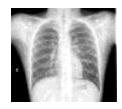
Feature Sparseness

Input



Discussion

Evaluation Datasets



CIFAR-10 Object Classification

GTSRB Self-Driving Cars **Pneumonia** Medical Diagnosis

Safety-Critical Applications

Neural Networks

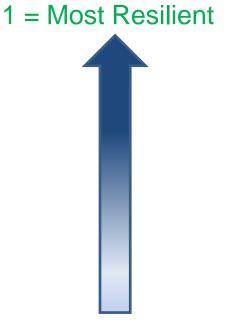
ML Model Name	Depth (# of Layers)
ConvNet	Shallow
DeconvNet	Shallow
MobileNet	Deep
ResNet18	Deep
ResNet50	Deep
VGG11	Deep
VGG16	Deep

Resilience Metrics

- Balanced Accuracy
 - Compatible with imbalanced datasets

• F1 score

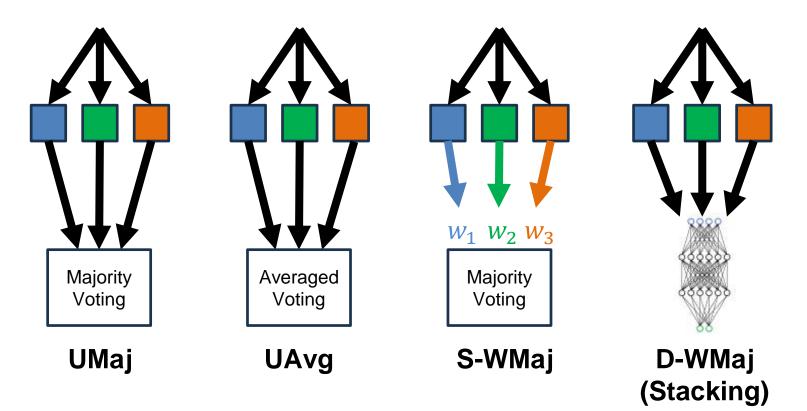
 Focus on false positives/negatives than true negatives (e.g. Pneumonia [focus case] vs Benign)



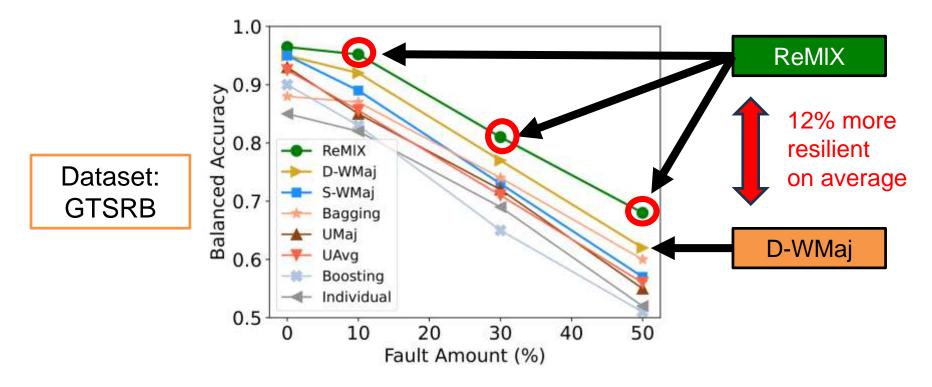
0 = Least Resilient

Discussion

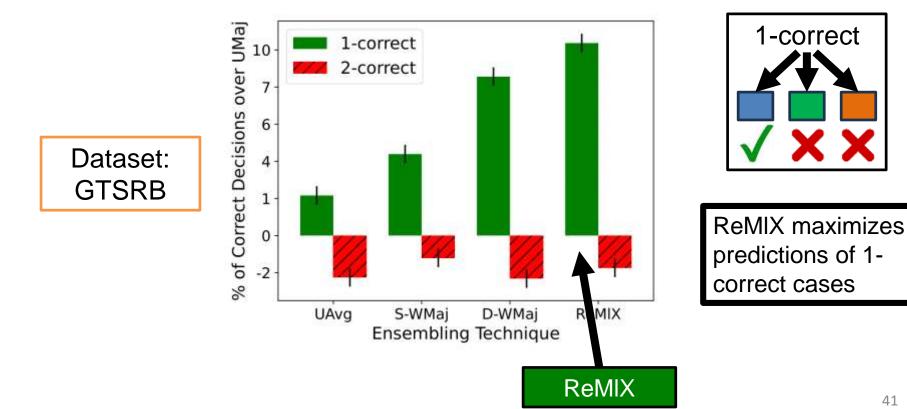
Ensembling Baselines



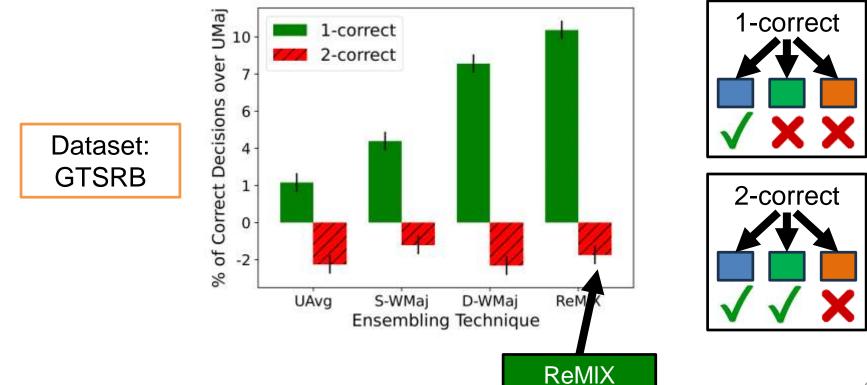
RQ1: Resilience of ReMIX vs Baselines



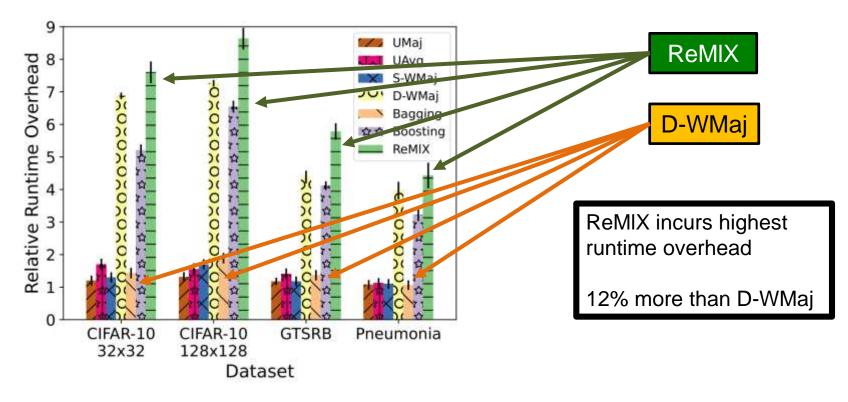
Motivation	Methodology	Evaluation	Discussion	
RQ1: Res	ilience of	ReMIX vs	Baselines	



MethodologyEvaluationDiscussionRQ1: Resilience of ReMIX vsBaselines



RQ2: Runtime Overhead



RQ2: Runtime Overhead

Application

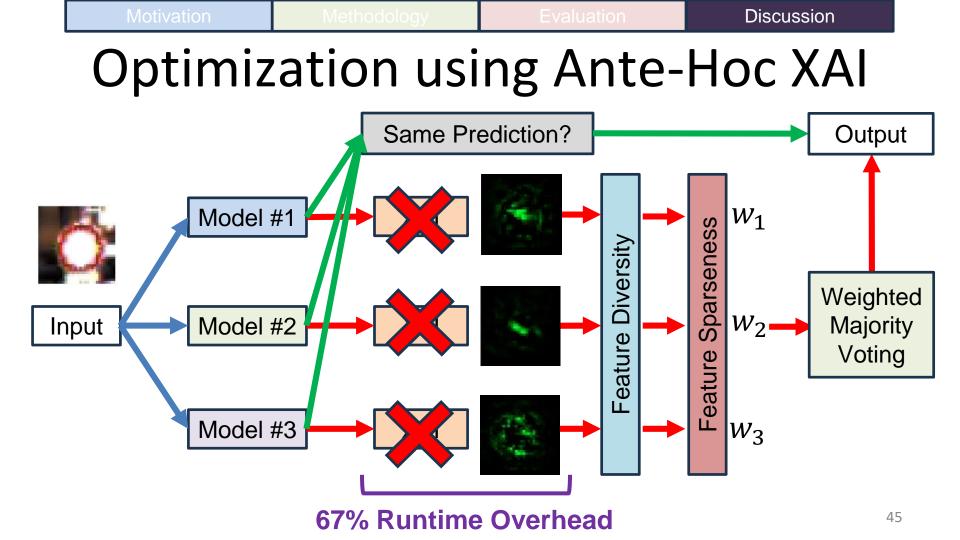


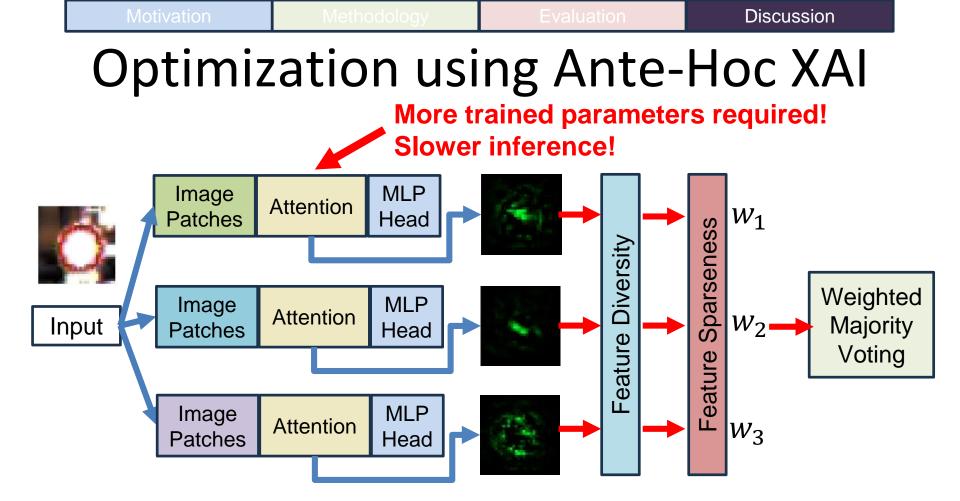
AVs - GTSRB

ReMIXIndustryAssociatedAverageMaximumRisk0.07s0.83sSafe braking

0.31s 0.50s VR sickness

VR Telesurgery - Pneumonia



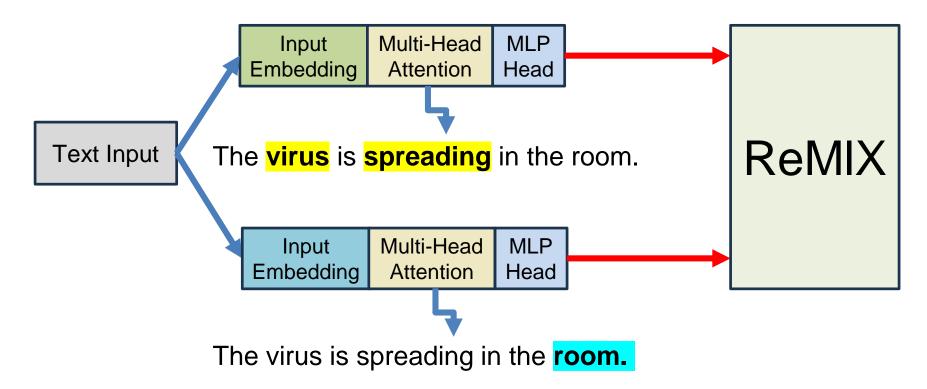


Future – ReMIX for Sentiment Analysis

Text Input

The virus is spreading in the room.

Future – ReMIX for Sentiment Analysis



Summary

- 1. Problem: Reducing misclassifications by ensembles
- 2. Approach: (ReMIX) Resilience of ML Ensembles using XAI
- Results: ReMIX improves resilience by 12% but with 15% overhead over D-WMaj / Stacking (best baseline)

Email: abrahamc@ece.ubc.ca

Website: https://people.ece.ubc.ca/abrahamc/

