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Training Data Faults in Practice

70% of Lyft dataset missing,
mislabelled [Kang et al, 2022]

Autonomous Vehicles

20% of ChestX-ray mislabelled
[Tang et al, 2021]
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Training Data Faults
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Autonomous Vehicle Example
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Random Mislabelling
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Resilience against Faulty Training Data
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How to mitigate training data faults
with minimal human effort?

@ 1 I_a bel Correction More Practitioner Effort
o |

2. Knowledge Distillation
3. Robust Loss
4. Label Smoothing

5 . E nsem b | es Less Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques
against Faulty Training Data in ML Applications [Chan, DSN’22] .




How to mitigate training data faults
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How to mitigate training data faults
: with minimal human effort?

Our Solution: Building Resilient Ensembles

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques
against Faulty Training Data in ML Applications [Chan, DSN’22] .




Resilient Ensembles
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Resilient Ensembles
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Resilient Ensembles
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Our Prior Work: Understanding the Resilience of Neural Network Ensembles
against Faulty Training Data [Chan, QRS’21]
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Resilient Ensembles
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Our Prior Work: Understanding the Resilience of Neural Network Ensembles
against Faulty Training Data [Chan, QRS’21]
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When Ensembles Misclassify?

This paper’s contribution:
ReMIX reduces ensemble misclassifications




Correct Models in Ensemble
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Correct Models in Ensemble
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Correct Models in Ensemble
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Correct Models in Ensemble

1 correct

Golden

training data faults

4x increase under l

30% Mislabelling

18



Correct Models in Ensemble

1 correct
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30% Mislabelling

5
Observation: Simple majority voting is
vulnerable under faulty training data
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How to determine weights?
ReMIX uses Feature Space
Diversity!

Dynamically Weighted Ensembles
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ReMIX Workflow
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Step 1 — Explainable Al (XAl)
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Input - Output Space
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Post-Hoc Local Explainable Al (XAl)

Post-Hoc XAl
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Post-Hoc Local Explainable Al (XAl)

Smooth Gradients (SG)
Integrated Gradients (IG)
SHAP
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Post-Hoc Local Explainable Al (XAl)

» 1. Smooth Gradients (SG w

2. Integrated Gradients (IG)
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Smooth Gradients (SG)
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Step 2 — Feature Diversity
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Feature Diversity using SG
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Dynamic Weights using Feature Diversity
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Step 3 — Feature Sparseness
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Feature Sparseness
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Feature Sparseness
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CIFAR-10
Object Classification

Evaluation Datasets

p—
GTSRB Pneumonia
Self-Driving Cars Medical Diagnosis

|

Safety-Critical Applications
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Neural Networks

ML Model Name Depth (# of Layers)
ConvNet Shallow

DeconvNet Shallow

MobileNet Deep

ResNetl18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep



Resilience Metrics

1 = Most Resilient
Balanced Accuracy

— Compatible with imbalanced datasets

F1 score

— Focus on false positives/negatives than true
negatives (e.g. Pneumonia [focus case] vs Benign)

O = Least Resilient
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Ensembling Baselines
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RQ1: Resilience of ReMIX vs Baselines
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RQ1: Resilience of ReMIX vs Baselines
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RQ1: Resilience of ReMIX vs Baselines
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Relative Runtime Overhead
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RQ2: Runtime Overhead
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12% more than D-WMaj

43



RQ2: Runtime Overhead

ReMIX Industry Associated
Average Maximum Risk

Application
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Optimization using Ante-Hoc XAl
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Optimization using Ante-Hoc XAl

More trained parameters required!
Slower inference!
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Future — ReMIX for Sentiment Analysis

Text Input

The virus is spreading in the room.
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Future — ReMIX for Sentiment Analysis
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Summary

1. Problem: Reducing misclassifications by ensembles
2. Approach: (ReMiIX) Resilience of ML Ensembles using XAl
3. Results: ReMIX improves resilience by 12% but with 15%

overhead over D-WMaj / Stacking (best baseline)

Email: abrahamc@ece.ubc.ca
Website: https://people.ece.ubc.ca/abrahamc/




