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Training Data Faults in Practice

70% of Lyft dataset missing, 
mislabelled [Kang et al, 2022]
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20% of ChestX-ray mislabelled 
[Tang et al, 2021]
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Training Data Faults
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Autonomous Vehicle Example
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Resilience against Faulty Training Data
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Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques 
against Faulty Training Data in ML Applications [Chan, DSN’22] 7

How to mitigate training data faults 
with minimal human effort?

1. Label Correction

2. Knowledge Distillation

3. Robust Loss

4. Label Smoothing

5. Ensembles

More Practitioner Effort

Less Practitioner Effort
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Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques 
against Faulty Training Data in ML Applications [Chan, DSN’22] 9

1. Label Correction

2. Knowledge Distillation

3. Robust Loss

4. Label Smoothing

5. Ensembles

Our Solution: Building Resilient Ensembles

How to mitigate training data faults 
with minimal human effort?

Methodology Evaluation DiscussionMotivation
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Resilient Ensembles
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Resilient Ensembles
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Resilient Ensembles

Diversity

Our Prior Work: Understanding the Resilience of Neural Network Ensembles 
against Faulty Training Data [Chan, QRS’21]
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Our Prior Work: Understanding the Resilience of Neural Network Ensembles 
against Faulty Training Data [Chan, QRS’21]

Resilient Ensembles
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When Ensembles Misclassify?

This paper’s contribution: 

ReMlX reduces ensemble misclassifications
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# Correct Models in Ensemble

Golden

3 correct 0 correct

3-correct 0-correct

2 correct 1 correct

Methodology Evaluation DiscussionMotivation



16

# Correct Models in Ensemble

Golden

1-correct

Simple Majority Boundary
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# Correct Models in Ensemble

Golden

30% Mislabelling

2 correct 1 correct 0 correct

Simple Majority Boundary
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# Correct Models in Ensemble

Golden

1 correct

4x increase under

training data faults

30% Mislabelling
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# Correct Models in Ensemble

Golden

1 correct

30% Mislabelling

Observation: Simple majority voting is 

vulnerable under faulty training data
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Dynamically Weighted Ensembles
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ReMlX Workflow
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Step 1 – Explainable AI (XAI)
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Input - Output Space
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Feature Space
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Post-Hoc Local Explainable AI (XAI)

25

Post-Hoc XAI

ML Model
No vehicles 

permitted

Motivation Methodology Evaluation Discussion



Post-Hoc Local Explainable AI (XAI)
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1. Smooth Gradients (SG)

2. Integrated Gradients (IG)

3. SHAP

4. LIME

5. Counterfactual Explanations

ML Model
No vehicles 

permitted

Faithful?

Robust?

Efficient?
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Post-Hoc Local Explainable AI (XAI)

27

1. Smooth Gradients (SG)

2. Integrated Gradients (IG)

3. SHAP

4. LIME

5. Counterfactual Explanations

ML Model
No vehicles 

permitted

Faithful?

Robust?

Efficient?

Motivation Methodology Evaluation Discussion



Gaussian 

Noise

Smooth Gradients (SG)
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Step 2 – Feature Diversity
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Feature Diversity using SG
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Feature-Space Diversity
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Dynamic Weights using Feature Diversity
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Step 3 – Feature Sparseness
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Feature Sparseness
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Feature Sparseness
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Evaluation Datasets
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CIFAR-10

Object Classification

GTSRB

Self-Driving Cars

Pneumonia

Medical Diagnosis

Safety-Critical Applications
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Neural Networks
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ML Model Name Depth (# of Layers)

ConvNet Shallow

DeconvNet Shallow

MobileNet Deep

ResNet18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep
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Resilience Metrics

• Balanced Accuracy
– Compatible with imbalanced datasets

• F1 score
– Focus on false positives/negatives than true 

negatives (e.g. Pneumonia [focus case] vs Benign)
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Ensembling Baselines
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RQ1: Resilience of ReMlX vs Baselines
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1-correct

RQ1: Resilience of ReMlX vs Baselines
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1-correct

RQ1: Resilience of ReMlX vs Baselines
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RQ2: Runtime Overhead
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RQ2: Runtime Overhead
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Optimization using Ante-Hoc XAI
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Optimization using Ante-Hoc XAI
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Future – ReMlX for Sentiment Analysis
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Future – ReMlX for Sentiment Analysis
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Motivation Methodology Evaluation Discussion

Text Input
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Summary
1. Problem: Reducing misclassifications by ensembles

2. Approach: (ReMlX) Resilience of ML Ensembles using XAI

3. Results: ReMlX improves resilience by 12% but with 15% 
overhead over D-WMaj / Stacking (best baseline)
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