Harnessing Explainability to Build Resilient Ensembles

Abraham Chan,

Arpan Gujarati, Karthik Pattabiraman, Sathish Gopalakrishnan

Training Data Faults

70% of Lyft dataset missing, mislabelled [Kang et al, 2022]

Autonomous Vehicles

20% of ChestX-ray mislabelled [Tang et al, 2021]

Healthcare

Training Data Faults

Autonomous Vehicle Example

Observed

70 km/h Speed Limit

Random Mislabelling

Resilience against Faulty Training Data

How to mitigate training data faults with minimal human effort? **Our Solution:** Build Resilient Ensembles **Our Work:** The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications [DSN'22]

7

Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications **[DSN'22]**

Resilient Ensembles

Our Work: Understanding the Resilience of Neural Network Ensembles against Faulty Training Data **[QRS'21]**

When Ensembles Misclassify?

Dynamically Weighted Ensembles

How to determine weights? Feature Space Diversity?

$$w_1, w_2 < w_3$$

Explainable AI (XAI)

- Local post-hoc techniques (black box ML):
 - SHAP
 - Counterfactual Explanations
 - Integrated Gradients

SHAP

• Which pixels contribute most to decision?

Features (Saliency Map)

Input

Example: Feature Diversity using SHAP

Example: Feature Diversity using SHAP

Optimized Workflow

Intuition: SHAP Correlations

- Similarity Metric: R^2 Correlation
- Benchmark: GTSRB with 30% Mislabelling

	ConvNet	DeconvNet	VGG11
ConvNet	1	0.72	0.53
DeconvNet	Х	1	0.36
VGG11	Х	Х	1

From Similarity to Weights

Saliency maps -> matrices (M₁, M₂)

- Distance between M_1 and M_2
 - R^2
 - Cosine similarity
 - Wasserstein Distance (Earth Mover's Distance)

Exp Setup: Evaluation Datasets

MNIST Handwritten Digits

CIFAR-10 Object Identification

GTSRB Pneumonia Self-Driving Cars Medical Diagnosis

Safety-Critical Applications

Exp Setup: Deep Neural Networks

ML Model Name	Depth (# of Layers)	
ConvNet	Shallow	
DeconvNet	Shallow	
MobileNet	Deep	
ResNet18	Deep	
ResNet50	Deep	
VGG11	Deep	
VGG16	Deep	

Research Questions

Feasibility	1. 2.	How many ensemble predictions are low confidence? How diverse are ensembles in the feature space, compared to prediction confidence?
Runtime	3.	When to use XAI?
Design	4. 5.	Which XAI technique? How to determine dynamic weights?

RQ1: Confidence under Training Faults

Test **Ensemble Ensemble** Inputs Random **Softmax Mislabelling** 0.53 **Training Data** (GTSRB) 0.81

RQ1: Confidence under Training Faults Test **Ensemble Ensemble** Inputs **Softmax** Random **Mislabelling** 0.53 **Training Data** (GTSRB) 0.81

Example: 70% Confidence Threshold

RQ1: Confidence under Training Faults

RQ1: Confidence under Training Faults

Prediction confidence drops as faulty training data increases

 How diverse are ensembles in the feature space compared to their prediction confidence?

Goal:

We could use SHAP with confidence to determine dynamic weights

Observations:

- SHAP correlations are low for both correct and incorrect cases
- Not necessarily true that high confidence have higher SHAP correlation

RQ3: Runtime Overhead

- Intuition: Only low confidence inputs needs to be checked by XAI
- 3.3x faster if XAI only applied on <u>low confidence</u> rather than every input

RQ4: Which XAI Technique?

Criteria:

- Consistency
- Contrastivity
- Runtime

RQ5: How to determine weights?

Image

ConvNet

VGG11

Focused

Dispersed

All models, trained with GTSRB with 30% Mislabelling

Summary

- 1. Ensembles are resilient, but need dynamic weights
- 2. Use XAI to determine ensemble weights
- 3. Combining XAI with prediction confidence

