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Training Data Faults
70% of Lyft dataset missing, 
mislabelled [Kang et al, 2022]
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20% of ChestX-ray mislabelled 
[Tang et al, 2021]

HealthcareAutonomous Vehicles



Training Data Faults
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Autonomous Vehicle Example
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Random Mislabelling
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Resilience against Faulty Training Data
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How to mitigate training data faults 
with minimal human effort?

Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques 
against Faulty Training Data in ML Applications [DSN’22]

Our Solution: Build Resilient Ensembles
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AlexNet
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Resilient Ensembles (NVP)

Diversity

Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques against 
Faulty Training Data in ML Applications [DSN’22]
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AlexNet

VGG16

ResNet50

Our Work: Understanding the Resilience of Neural Network Ensembles against 
Faulty Training Data [QRS’21]

Resilient Ensembles
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When Ensembles Misclassify?
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Dynamically Weighted Ensembles
 

 

 

 
How to determine weights?
Feature Space Diversity?



Input - Output Space

12

Input Output

Image

4



Feature Space
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Explainable AI (XAI)
• Local post-hoc techniques (black box ML):

– SHAP
– Counterfactual Explanations
– Integrated Gradients
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ML Model

Post-hoc XAI
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SHAP

• Which pixels contribute most to decision?
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Input Features (Saliency Map)



Example: Feature Diversity using SHAP
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Example: Feature Diversity using SHAP
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Concern: XAI can be slow during inference



Optimized Workflow
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Intuition: SHAP Correlations

• Similarity Metric: R^2 Correlation

• Benchmark: GTSRB with 30% Mislabelling
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ConvNet DeconvNet VGG11

ConvNet 1 0.72 0.53

DeconvNet X 1 0.36

VGG11 X X 1



From Similarity to Weights

•  
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Exp Setup: Evaluation Datasets
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Exp Setup: Deep Neural Networks
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ML Model Name Depth (# of Layers)

ConvNet Shallow

DeconvNet Shallow

MobileNet Deep

ResNet18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep



Research Questions
1. How many ensemble predictions are low 

confidence?
2. How diverse are ensembles in the feature space, 

compared to prediction confidence?
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3. When to use XAI?



RQ1: Confidence under Training Faults
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RQ1: Confidence under Training Faults
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RQ1: Confidence under Training Faults
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Softmax Threshold



RQ1: Confidence under Training Faults
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Softmax Threshold

Prediction confidence drops as faulty training data increases

 



RQ2: Confidence - Feature Correlation
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• How diverse are ensembles in the feature 
space compared to their prediction 
confidence?



RQ2: Confidence - Feature Correlation
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Goal:

We could use SHAP with confidence to determine 
dynamic weights



RQ2: Confidence - Feature Correlation
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RQ2: Confidence - Feature Correlation
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RQ2: Confidence - Feature Correlation
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RQ2: Confidence - Feature Correlation

33

GTSRB, 30% mislabelling

Input

ConvNet

Deconvnet

 



RQ2: Confidence - Feature Correlation
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RQ2: Confidence - Feature Correlation
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RQ2: Confidence - Feature Correlation
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Observations:

• SHAP correlations are 
low for both correct 
and incorrect cases

• Not necessarily true 
that high confidence 
have higher SHAP 
correlation



RQ3: Runtime Overhead
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• Intuition: Only low confidence inputs needs to be 
checked by XAI

• 3.3x faster if XAI only applied on low confidence 
rather than every input



RQ4: Which XAI Technique?

Criteria:
– Consistency

– Contrastivity

– Runtime 
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RQ5: How to determine weights?
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Image ConvNet VGG11

Focused Dispersed

• All models, trained with GTSRB with 30% Mislabelling



Summary

1. Ensembles are resilient, but need dynamic weights

2. Use XAI to determine ensemble weights

3. Combining XAI with prediction confidence
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Email: abrahamc@ece.ubc.ca


