FT Analysis for Distributed Real-Time Systems

ailures-In-Time: Expected number of failures in one billion operating hours

Arpan Gujarati, Mitra Nasri & Björn B. Brandenburg

5 This Work Provably Safe Analysis

A. All kinds of (Byzantine) failure scenarios

B. Real-time scheduling theory + Basic probability theory C. Leverage the structure of faulttolerant networked control systems

E.g., in an embedded control system:

As per IEC 61508 standard for electronic systems:

Zero risk of failures can never be achieved

Systems must adhere to appropriate Safety Integrity Levels (SIL), e.g.,

SIL	Continuous mode: P (failure / hour)	Low demand mode: P (failure on demand)
1	[10 ⁻⁶ , 10 ⁻⁵)	[10 ⁻² , 10 ⁻¹)
4	[10 ⁻⁹ , 10 ⁻⁸)	[10 ⁻⁵ , 10 ⁻⁴)

Problem: How to quantify

7 Analysis

Step 1: Upper-bound message omission, incorrect computation, & deadline violation probabilities using peak transient fault rates derived from high interference scenarios, and Poisson model for fault arrivals.

Step 2: Upper-bound iteration failure probability of a single control loop

accounting for interactions between different types of message errors, and correlations due to synchronous and deterministic behavior of replicas. Step 3: Lower-bound the Mean Time
To Failure (MTTF) of the control loopwhere failure denotes a violation of
the plant's (m, k)-firm constraint,
using a numerical analysis technique
that is both scalable and safe.Step 4: Upper-bound the FIT rate
(Failures-In-Time) for the control loop
Upper bound _ 109

on the FIT rate = Lower bound on the MTTF (in hours)

FITLoop1

FITLoop2

Step 5: Upper-bound the system-wide FIT rate

 a safe & accurate bound on the system reliability?
Simulation is not provably safe
Schedulability analyses only consider time domain failures

Safety and liveness proofs ignore hard timeliness

Probabilistic model checking has scalability challenges

Prior real-time analyses do not consider Byzantine errors

When do network timing requirements (or the network schedulability analyses) become a limiting factor? What if the desired reliability is under 1 FIT? What if the control loop is not very robust,

e.g., (1, 10000)-firm?