Building “Ultra-Reliable” Networked Control Systems
U S| N g COTS CO M pO ne ntS Arpan Gujarati, Malte Appel & Bjérn B. Brandenburg

What is ultra-reliability?

Quantifiably negligible failure rates Drone/robot/AV fleets using
In the presence of stochastic fault processes cheap, fast, but unreliable

COTS

86 | 8165 = 86 BG || B16S K 8G
Fault-Tolerant Multiprocessor by 12 il — E —

Example: FTMP it IT P IR

PROCESSOR PROCESSOR

hardware

Can we achieve

. |
Hopkins et al. (1978) Pe oee FTMP-like ultra-reliability

PROCESSOR
AND CACHE AND CACHE

Custom hardware with dynamic

AND CACHE

redundancy and tlght SynChron|Zatlon e NTERT AGE ACCESS BUSES §

Analysis of component-level failures
using combinatorial methods

|t i on unreliable COTS
processors and networks?

Can Raspberry Pi’s over

Under 1010 failures/hr ', Ethernet be ultra-reliable?

BIGS = BUSISO

TO/FROM SYSTEM

Our approach Ultra-reliability as an emergent property over unreliable hardware

Existing methods for software fault tolerance, Predictable (time-sensitive)
e.g., robust controllers, replication, BFT protocols Implementations

Quantitative reliability analysis
to demonstrate ultra-reliability

This work — Achal — a predictable BFT middleware for NCS

| Replica read(k, t) 1 »
, \ . Frontend | Backend |
' Application Replica | < >| 1 (APl parsing) | | (BFT Coord!na_l’_ci_c_)_r})__;
' Application Replica <,‘:$ | Local Datastore @

. (write queue + key-value map)
' Application Replica |< : > L=

1: procedure PERIODICTASKACTIVATION
2: time <+ timeOfLastActivation()
current < getSensorData()

error <— target — current

time < timeOfNextActivation()
Achal.write(“errorKey”, error, time)
Achal.write(“integralKey”, integral, time)
actuate(force)

» 28 ®N v AW

=

Predictable Network + Clock Synchronization }

[y
[y

Predictable hard real-time implementation ensures
by design that writes are committed on time

integral <— Achal.read(“integralKey”, time) + error _
derivative « error — Achal.read(“errorKey”, time) = Message reorderings
force <— kp * error + ki * integral + kd * derivative

Design overview Read/write API based on absolute time Avoids data races
’ ok ; . Algorithm 4.2 Periodic task of a PID controller for balancing an in- despite runtime
Application < write(k, v1, 1) Local Achal Instance verted pendulum, programmed over Achal. variations

= Fault-induced errors
= Execution time jitter
= [ask re-executions

Inspired from the Logical Execution Time
(LET) paradigm (Henzinger et al., 2001)

Initial latency results (crash in gray region)

103

102_

101_

ol ™ Cassandra

* n
N, HE oy g g Y |
.'.lil!“.'l'll+'liii.l=lili'-lltli'...lll'lil=i.:‘ mE ...:-l..‘l‘..‘il=.=l'
flbost)00900,,.000000000000000000000000060000000

10°+ e Achal + BFT-SMaRt

L o e e e

200 210 220 230 240 250 260

Control Loop lterations

Prior, ongoing, and future work

Quantified conservative failure rates for temporally robust, actively replicated NCS on Achal-over-Ethernet and CAN
» Accounted for time and value domain errors at the message granularity (more fine-grained than in FTMP)

Currently evaluating Achal using different NCS applications and against related work on B
Next step — ultra-reliable clock synchronization protocols over Ethernet; is the Precision

-T protocols & key-value stores
Time Protocol ultra-reliable?

COTS = Commercial Off-The-Shelf | CPS = Cyber-Physical Systems | NCS = Networked Control Systems | BFT = Byzantine Fault-Tolerant | CAN = Controller Area Network

