—
e — MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS

Achal is a Byzantine Fault Tolerant (BFT) middleware for actively replicating
networked control systems over Ethernet

In a nutshell

Achal is a Byzantine Fault Tolerant (BFT) middleware for actively replicating
networked control systems over Ethernet

Arpan Gujarati (MPI-SWS) EMSOFT 2019

In a nutshell

Achal is a Byzantine Fault Tolerant (BFT) middleware for actively replicating
networked control systems over Ethernet

--

Use of latency-aware Ethernet
standards on the rise

Ethernet TSN

Arpan Gujarati (MPI-SWS) EMSOFT 2019

In a nutshell

Achal is a Byzantine Fault Tolerant (BFT) middleware for actively replicating
networked control systems over Ethernet

--

Use of latency-aware Ethernet
. standards on the rise

Non-malicious Byzantine errors
(inconsistent broadacsts) due
to transient faults

Ethernet TSN

Arpan Gujarati (MPI-SWS) EMSOFT 2019

In a nutshell

Achal is a Byzantine Fault Tolerant (BFT) middleware for actively replicating
networked control systems over Ethernet

--

Use of latency-aware Ethernet

. . . standards on the rise
Non-malicious Byzantine errors ' '

(inconsistent broadacsts) due
to transient faults

Ethernet TSN

Achal Is designed to
mask these errors

Arpan Gujarati (MPI-SWS) EMSOFT 2019

Motivation

- Inadequate resources (developer hours, |
. computing power, component costs)

__

__neliabiity”

Commercial, space, Autonomous Surgical Other robots
and military aircraft vehicles robots and drones

1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Arpan Gujarati (MPI-SWS) EMSOFT 2019

Motivation

- # failure events will rise proportionally |

>

=

O]

D

.
Commercial, space, Autonomous Surgical Other robots
and military aircraft vehicles robots and drones

1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)
2 SESAR Joint Undertaking. “European Drones Outlook Study-Unlocking the value for Europe.” SESAR, Brussels (2016)

Arpan Gujarati (MPI-SWS) EMSOFT 2019

o eq
SuoleJlado pPoa1oadx3

Today's commercial aircraft systems are highly reliable!

It will become imperative to also make the next generation of fully-autonomous CPS,

such as autonomous vehicles, drones, and robots, highly reliable?

Problem

Today's commercial aircraft systems are highly reliable!

't will become imperative to also make the next generation of fully-autonomous CPS,
such as autonomous vehicles, drones, and robots, highly reliable?

- - Building highly reliable CPS using cheap, fast, but
ObIeCtlve unreliable COTS components at economical costs

Arpan Gujarati (MPI-SWS) EMSOFT 2019

Key contribution: CPS-friendly BFT middleware

Key contribution: CPS-friendly BFT middleware
Controllertask repiica R Re Ra Ru

read (key k, timestamp t)
v v v

write(key k, value v, timestamp t)

| ocal datastore

Clock synmromsatlon

e.g., using PP

—thernet TSN

Arpan Gujarati (MPI-SWS) EMSOFT 2019 5

Key contribution: CPS-friendly BFT middleware
Controllertask repiica Ry Re Ra R

read(key k, timestamp t)

write(key k, value v, timestamp t)

| ocal datastore

The datastore is aware of the temporal
properties of the applications, e.g., the data age
and freshness requirements of the control loops

Clock synmromsatlon
e.g., using PTP

—thernet TSN

Arpan Gujarati (MPI-SWS) EMSOFT 2019 5

Key contribution: CPS-friendly BFT middleware

read (key k, timestamp t)

write(key k, value v, timestamp t)

| ocal datastore

v
A

v v
A A

Clock synmromsatlon

Arpan Gujarati (MPI-SWS)

EMSOFT 2019

e.g., using PP

—thernet TSN

A C
3

state coordina

assic leaderless

- | protocol

for
ife]a

Key contribution: CPS-friendly BFT middleware
Controllertask repiica R Re Ra Ru

read (key k, timestamp t)
v v v

write(key k, value v, timestamp t)

| ocal datastore

To filter noise In

CPS applications Clock synmromsatlon

e.g., using PP

—thernet TSN

Arpan Gujarati (MPI-SWS) EMSOFT 2019 5

read (key k, timestamp t)
\4 v \4
IlIII IIIII IIIII

write (key k, value v, timestamp t)

| ocal datastore

Synchronous

| network
Clock synmronlsatlon

e.g., using PTP

Key contribution: CPS-friendIy BFT middleware

read (key k, timestamp t)

l write (key k, value v, timestamp t)

| ocal datastore

v v
A A

Clock synmromsatlon

e.g., using PTP

Arpan Gujarati (MPI-SWS)

EMSOFT 2019

;‘
[\

' Schedulability
| analysis

“thernet TSN f

Predlctab\e
' implementation

|

|

| Reliability
| analysis

For more details ...

How to program networked control
systems over Achal's time-aware API7

Arpan Gujarati (MPI-SWS) EMSOFT 2019

For more details ...

How to program networked control
systems over Achal's time-aware API7

How Is the timing predictability ensured?

Arpan Gujarati (MPI-SWS) EMSOFT 2019

For more details ...

How to program networked control
systems over Achal's time-aware API7

How Is the timing predictability ensured?

How to quantify its reliability in the

presence of

Arpan Gujarati (MPI-SWS)

S

tochastic transient faults”?

EMSOFT 2019

For more details ...

How to program networked control
systems over Achal's time-aware API7

How Is the timing predictability ensured?

How to quantify its reliability in the

presence of

S

tochastic transient faults”?

How does its performance compare with
that of BFT-SMaRt and Cassandra®”

Arpan Gujarati (MPI-SWS)

EMSOFT 2019

-~

. .
« o= - - f S - “_, e W - " - .q_ e

Building “Ultra-Reliable” Networked Control Systems
! US|ng COTS Com ponentS Arpan Gujarati, Malte Appel & Bjérn B. Brandenburg

For more details ...

What is ultra-reliability? Future CPS

Quantifiably negligible failure rates Drone/robot/AV fleets using
in the presence of stochastic fault processes cheap, fast, but unreliable
COTS hardware

Example: FTMP

Fault-Tolerant Multiprocessor by
Hopkins et al. (1978)

How to program networked control

Analysis of component-level failures

systems over Achal's time-aware API?

Our approach Ultra-reliability as an emergent property over unreliable hardware

) Can we achieve

FTMP-like ultra-reliability \
on unreliable COTS

processors and networks?

‘ Can Raspberry Pi’s over
Ethernet be ultra-reliable?

4
TO/FROM SYSTEM TO/FROM SYSTEM

Existing methods for software fault tolerance, Predictable (time-sensitive) Quantitative reliability analysis
e.g., robust controllers, replication, BFT protocols implementations to demonstrate ultra-reliability

How Is the timing predictability ensured?

This work — Achal — a predictable BFT middleware for NCS

Design overview Read/write APl based on absolute time Avoids data races
itk ¢ Algorithm 4.2 Periodic task of a PID controller for balancing an in-| despite runtime
write(k, v1, 9 Local Achal Instance verted pendulum, programmed over Achal. variations
Replica read(k, t) 7Fr07nter7'|<7:I‘ 7B7ac|7(eind ”””” 1: procedure PERIODICTASKACTIVATION
| L ! © timeOfLastActivati . -
{ Application Replica } ! (API parsing) i | (BFT coordination) 2, Cl:rfe; imeetseizoﬂg:;j(;ono Fault "?duc.ed e.r_rors
3 error ¢ targget current = Execution time jitter
””””””””””””””””””””””” 4 — .
u u u u u u [Application Replica } ‘ . Local Datastore ; 5: integral <— Achal.read(“integralKey”, time) + error = Task re-executlor.]s
,(thtegljleu?+keiy-vialiuemap)i 6: derivative < error — Achal.read(“errorKey”, time) L Message reorderlngs
{ Application Replica } — 7: force «<— kp * error + ki x integral + kd * derivative 1
’ 8: time < timeOfNextActivation()
9 Achal.write(“errorKey”, error, time) Inspired from the Logical Execution Time
‘ Predictable Network + Clock Synchronization 10: Achal.write(“integralKey”, integral, time) (LET) paradigm (Henzinger et al., 2001)
- t .t [] .t [] .t f | t r? 11 actuate(force) |
p re S e I I C e O S O C ‘ I a S | C r a | I S | e | l a u S . Predictable hard real-time implementation ensures Initial lat It hi ,
by design that writes are committed on time nitial latency results (crash in gray region)
103 -
A & £ 8 & :
N N 2) <
& -So’,?\ .~;§ §>\ ® > $§ Qb(v & 102 .
E\QQ)Q §§ IS Qb§ IS §'3’Q € o] .m, mm LI LIy * o, 4, " oy, m N mgs
A Ny A g & A & QA & & “/4@ & AQ@ 2 A ‘U; 10t 7'.!-|J PLM L P L e ll.ll'lq-u“.." . l.lll:'!ﬂl".l....=.='l
I | [Toe| | 78 | T || 77] 77| T]| Toost | g
I ! !] -
I T 0 T > o1 b} 1 10°4 e Achal + BFT-SMaRt
Rp'r‘c Rs ANW Rt RS ANW Rt Rr Rpost ol = Cassandra anEEeees

How does its performance compare with
that Of BFT—SMaRt and Cassandra? Prior, ongoing, and future work

Quantified conservative failure rates for temporally robust, actively replicated NCS on Achal-over-Ethernet and CAN
= Accounted for time and value domain errors at the message granularity (more fine-grained than in FTMP)

Currently evaluating Achal using different NCS applications and against related work on BFT protocols & key-value stores
Next step — ultra-reliable clock synchronization protocols over Ethernet; is the Precision Time Protocol ultra-reliable?

OTS = Commercial Off-The-Shelf | CPS = Cyber-Physical Systems | NCS = Networked Control Systems | BFT = Byzantine Fault-Tolerant | CAN = Controller Area Network

AR

Arpan Gujarati (MPI-SWS) EMSOFT 2019

