
Tableau: A High-Throughput and Predictable VM Scheduler for
High-Density Workloads

Manohar Vanga
MPI-SWS

Kaiserslautern, Germany

Arpan Gujarati
MPI-SWS

Kaiserslautern, Germany

Björn B. Brandenburg
MPI-SWS

Kaiserslautern, Germany

ABSTRACT
In the increasingly competitive public-cloud marketplace, improv-
ing the efficiency of data centers is a major concern. One way to
improve efficiency is to consolidate as many VMs onto as few phys-
ical cores as possible, provided that performance expectations are
not violated. However, as a prerequisite for increased VM densi-
ties, the hypervisor’s VM scheduler must allocate processor time
efficiently and in a timely fashion. As we show in this paper, con-
temporary VM schedulers leave substantial room for improvements
in both regards when facing challenging high-VM-density work-
loads that frequently trigger the VM scheduler. As root causes, we
identify (i) high runtime overheads and (ii) unpredictable sched-
uling heuristics. To better support high VM densities, we propose
Tableau, a VM scheduler that guarantees a minimum processor
share and a maximum bound on scheduling delay for every VM
in the system. Tableau combines a low-overhead, core-local, table-
driven dispatcher with a fast on-demand table-generation proce-
dure (triggered on VM creation/teardown) that employs scheduling
techniques typically used in hard real-time systems. In an evalu-
ation of Tableau and three current Xen schedulers on a 16-core
Intel Xeon machine, Tableau is shown to improve tail latency (e.g.,
a 17× reduction in maximum ping latency compared to Credit) and
throughput (e.g., 1.6× peak web server throughput compared to
RTDS when serving 1 KiB files with a 100ms SLA).

CCS CONCEPTS
•Computer systems organization→Cloud computing;Real-
time systems; • Software and its engineering → Virtual ma-
chines; Scheduling; Real-time schedulability;

KEYWORDS
Virtualization, Hypervisor Scheduling, Real-Time Scheduling

ACM Reference Format:
Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg. 2018. Tableau:
A High-Throughput and Predictable VM Scheduler for High-Density Work-
loads. In EuroSys ’18: Thirteenth EuroSys Conference 2018, April 23–26, 2018,
Porto, Portugal. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3190508.3190557

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190557

1 INTRODUCTION
As the marketplace for public clouds matures and cloud services
are being increasingly commoditized, cloud providers are forced
to continuously increase the efficiency of their data centers, and to
improve the price/performance ratio of their various service tiers,
especially at the low end.

One way to increase data center efficiency is to pack a growing
number of VMs onto fewer physical cores. This reduces resource
wastage as active cores serving multiple lower-tier VMs are highly
utilized while the number of paying customers relative to the re-
quired infrastructure can be increased. Alternatively, any freed-up
machines can be used to support higher-tier (and higher-priced)
VMs that require dedicated processing cores. Either way, the abil-
ity to consolidate a larger number of lower-tier VMs onto fewer
cores—i.e., the ability to pack VMs as tightly as possible without
violating customer expectations—is a distinct economic advantage
in the competitive cloud marketspace. However, consolidating VMs
onto shared cores is easier said than done as customers desire high
throughput and reasonably low and stable latency characteristics
even for lower-tier VMs.

A key hypervisor component that affects these central metrics—
application throughput and latency, as perceived by the customer—
is the VM scheduler. In particular, if the VM scheduler is ineffi-
cient (i.e., if it suffers from large runtime overheads), then the peak
throughput attainable by guest VMs will be needlessly limited. Fur-
thermore, while application tail latency is a complex phenomenon
that is determined by multiple factors, if the VM scheduler occasion-
ally induces a substantial amount of scheduling latency due to poor
scheduling decisions, then application tail latency will inevitably
suffer. In other words, if the VM scheduler is a major bottleneck,
then it will surely impose a tax on application performance.

Unfortunately, many of the VM schedulers in widespread use
today, and especially those used in Xen, are not yet optimized for
hosting highly consolidated, high-VM-density workloads, and have
little to offer in terms of performance guarantees. In particular, as we
show in this paper (Sec. 7), Xen’s existing schedulers can negatively
affect either tail latencies, throughput, or both due to the use of
unpredictable scheduling heuristics that sometimes backfire and/or
implementation aspects that cause undesirably high overheads,
especially when faced with a large number of densely packed VMs.

Motivated by these observations, this paper presents Tableau,
a highly predictable, high-throughput VM scheduler based on an
unorthodox design not previously explored in a data-center con-
text. Specifically, Tableau leverages multiprocessor scheduling tech-
niques typically used in hard real-time systems, and exploits specific
properties of cloud environments to minimize runtime overheads,
unlike prior real-time VM schedulers (e.g., RT-Xen [74]).

https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/3190508.3190557

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

Tableau consists of two main components: (i) a low-overhead,
table-driven, core-local dispatcher that schedules VMs primarily
based on a given static schedule, and (ii) an asynchronous, infre-
quently invoked planner that re-generates tables on-demand when
VMs are either created, torn down, or reconfigured.

As a result of this clear separation between a semi-offline plan-
ning phase and an extremely simple online dispatcher, Tableau
incurs significantly lower runtime overheads (around 5.6×, 2.4×,
and 2× lower than under Credit, Credit2, and RTDS, respectively,
see Sec. 7.2). These efficiency gains in turn can translate into sub-
stantial improvements in SLA-aware throughput (e.g., compared
to RTDS, Tableau can achieve up to 1.6× higher peak throughput
when serving 1 KiB files with a 100ms SLA, see Sec. 7.4).

Furthermore, Tableau’s inherent predictability can yield sub-
stantially improved tail latency characteristics for workloads that
frequently invoke the VM scheduler (e.g., in some cases VMs sched-
uled by Tableau exhibit up to 17× lower maximum ping latency
compared to Credit, the default Xen scheduler, see Sec. 7.3).

Key to Tableau is the planning stage, which is performed asyn-
chronously. It thus only affects the creation, teardown, and reconfig-
uration time of VMs (inflating each one by a few hundred millisec-
onds), an acceptable tradeoff for relatively infrequent operations
that usually take on the order of seconds to begin with.

Each VM under Tableau is configured with a minimum CPU
budget (or utilization) and a maximum-acceptable scheduling de-
lay, both of which can be determined either based on an explicit
SLA, based on pre-determined, price-differentiated service tiers of-
fered by cloud vendors, or empirically based on the deployed work-
load or simple fair-share policies. Tableau’s planner applies tech-
niques from hard real-time multiprocessor scheduling to quickly
re-generate scheduling tables whenever needed, while ensuring that
all constraints on the minimum utilization and maximum schedul-
ing latency for every VM in the system are satisfied. Consequently,
Tableau provides direct control over one of the key contributors to
tail latencies, namely the scheduling latency of individual VMs.

Contributions.We present the design of Tableau (Sec. 3), an un-
orthodox scheduling approach rooted in static scheduling tables
(as pioneered in hard real-time systems [35]), which has not pre-
viously been explored in a cloud context. Tableau requires on-
demand generation of scheduling tables satisfying the utilization
and scheduling-latency constraints of individual vCPUs. We detail
how to quickly find such tables by repurposing relevant real-time
scheduling theory (Sec. 5), and report on an efficient implementa-
tion of Tableau in Xen 4.9 (Sec. 6). Notably, our implementation is
inherently scalable because it uses almost exclusively core-local
data structures. In an evaluation with an I/O-intensive workload on
a dual-socket, 16-core Intel Xeon platform (Sec. 7), our Tableau pro-
totype is shown to outperform the existing Xen schedulers (RTDS,
Credit, and Credit2) in terms of their SLA-aware peak throughput.

In summary, Tableau is a novel, predictable, high-throughput
VM scheduler designed to ensure that VM scheduling is no longer
a bottleneck in the support for high-density VM workloads.

2 THE PROBLEM
Each VM consists of one or more vCPUs. The role of the VM sched-
uler is to multiplex the vCPUs of all VMs onto the available physical

CPU cores (pCPUs) such that each VM receives (at least) a certain
configured share of CPU time while minimizing the latency and
maximizing the throughput exhibited by tenant applications.

As we explain next, these goals are affected by (i) unpredictable
scheduling heuristics, as employed by many popular VM schedulers,
as they may cause increased tail latencies, and (ii) high runtime
overheads, which eat up precious cycles and thus lower throughput.

2.1 Unpredictability Increases Tail Latencies
To improve the average-case latency of VMs, many VM schedulers
contain heuristics and special-case optimizations that favor VMs
performing I/O [17, 52, 67].

For example, Xen’s default Credit scheduler, a design rooted in
the principle of proportionate fairness [31], “boosts” the priority of
vCPUs that resume from a blocking I/O operation to temporarily
override the fairness criterion. Similarly, Linux’s Completely Fair
Scheduler (CFS), which is widely used in conjunction with Linux’s
built-in KVM hypervisor, also uses accounting tricks to favor I/O
activity (e.g., the “gentle fair sleepers” setting). In fact, CFS has even
been observed to under-utilize cores in fully loaded systems due to
complex and erratic (and erroneous) load-balancing heuristics [43].

Unfortunately, the effects of such heuristics are difficult to antici-
pate and can result in increased tail latencies. For instance, whether
Xen’s “boosting” heuristic actually reduces I/O latency depends on
the number of simultaneously boosted vCPUs: if every vCPU is
performing I/O and boosted as a result, then effectively no vCPU
is boosted. As we show in our evaluation, such runtime heuristics
increase performance volatility, which translates into increased,
scheduler-induced tail latencies for high-VM-density workloads.

2.2 Scheduling Overhead Limits Throughput
A second major concern is that a VM scheduler must exhibit very
low runtime overheads, because it can be frequently invoked, and
because any cycles spent on scheduling are pure overhead in that
they would otherwise have been available to applications of pay-
ing customers. Thus, in addition to causing unpredictable latency
spikes, dynamic scheduling heuristics can also be detrimental to
throughput because they must be frequently computed. Similarly,
any other major source of runtime overheads such as lock con-
tention inside the scheduler hurts application throughput.

At cloud scale, such overheads can add up to massive costs. For
example, a recent study of more than 20,000 computers in one of
Google’s data centers found that roughly 5% of all processor cycles
are spent on the kernel’s process scheduler [30]. In the case of high-
density workloads, the effects of any scheduling bottlenecks are
further exacerbated by their naturally higher context-switch rates.

There is thus strong motivation to make the VM scheduler as
efficient as possible. However, as we demonstrate in our evaluation,
contemporary VM schedulers leave substantial room for improve-
ments in terms of both runtime overheads and scheduler-induced
tail latencies when facing challenging high-VM-density workloads
that frequently trigger the VM scheduler. As a novel, unorthodox
alternative that occupies a previously unexplored point in the de-
sign space of VM schedulers, we propose Tableau, a low-overhead
VM scheduler that guarantees a minimum share of CPU time and a
hard bound on maximum scheduling latency for every vCPU.

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

3 THE TABLEAU APPROACH
Tableau is based on a table-driven design inspired by hard real-time
systems to minimize runtime overheads while maintaining high
throughput and predictable latencies even when confronted with a
large number of VMs. In the following, we introduce the high-level
design; implementation-level optimizations are discussed in Sec. 6.
Dispatcher vs. planner. VMs in cloud environments are typically
long-running. For example, a majority of customer VMs hosted
on Microsoft Azure have a lifetime of at least a few hours [19],
and VMs that run longer than a day are likely to run for several
days and account for more than 95% of the total core hours [19].
Based on this observation, we push all expensive scheduling logic
related to satisfying VM performance requirements into a separate,
infrequent planning (or system reconfiguration) step that is only
invoked when a VM is started up, torn down, or reconfigured.

Consequently, Tableau’s scheduler consists of two main compo-
nents: a straightforward, low-overhead, table-driven dispatcher and
a relatively heavy-weight scheduling table generator (or planner).
The dispatcher resides in the hypervisor and is invoked whenever a
scheduling decision is needed. It simply enacts the latest scheduling
table provided by the planner. The planner in turn can reside any-
where (e.g., it can be an unprivileged process) and is invoked if a
new table is needed, i.e., when a system reconfiguration occurs. By
leveraging multiprocessor real-time scheduling theory (discussed
in Sec. 5), the planner quickly generates tables that guarantee a
minimum CPU share and a hard upper bound on the maximum
scheduling delay for each VM in the system.

An immediate benefit of the split between a minimal, efficient
dispatcher and a separate system-wide planning process is that the
dispatcher uses primarily core-local data structures, which trivially
ensures Tableau’s scalability on large multicore platforms. All deci-
sions requiring system-wide information and coordination as well
as table updates are done asynchronously by the planner and do not
slow down the online dispatcher. Thus, the performance-critical
scheduler hot paths are not impacted by the planner’s overheads.
Second-level scheduler. A naive table-driven scheduler, however,
is too inflexible at runtime and results in non-work-conserving be-
havior. Since it is generally the goal of cloud operators to use each
and every last cycle to maximize profits, this is clearly not an accept-
able limitation. In Tableau, we hence overcome this limitation by
incorporating a simple second-level round-robin fair-share sched-
uler that is invoked whenever the first-level table-driven scheduler
fails to find a vCPU to schedule.

To summarize, Tableau is a two-level, hierarchical scheduling
approach with a table-driven dispatcher at the first level, a core-
local fair-share scheduler at the second level, and an infrequently
invoked asynchronous planner. Together, these components ensure
flexible, work-conserving runtime behavior on top of the minimum
performance guarantees incorporated into the tables, which are
(re-)generated on demand.

We next elaborate on the dispatcher and then discuss how the
planner finds scheduling tableswith performance guarantees in Sec. 5.

4 A MINIMAL DISPATCHER
At the first level, Tableau schedules vCPUs using a table-driven
dispatcher, not unlike those commonly found in safety-critical hard

real-time systems. For instance, the ARINC 653 standard for inte-
grated modular avionics [56] specifies time-partitioned scheduling,
which is accomplished with static scheduling tables. We adopt this
proven technique for building highly predictable systems.

A table-driven dispatcher requires a pre-generated scheduling
table of finite length, usually in the range of a few hundred millisec-
onds. For each core, the table is given as a set of non-overlapping
intervals, each of which is specified using offsets relative to the
start of the table. Each interval is either marked as idle or reserved
for a specific vCPU that is given priority during the interval.

When the dispatcher is invoked at runtime, it simply looks up the
interval in the scheduling table covering the current time (modulo
the table length). If this interval is reserved for a specific vCPU,
and if that vCPU is ready, it is dispatched and allowed to run un-
interruptedly until the end of the interval. If the specific vCPU
is blocked, or if the interval is marked as idle, the second-level
scheduler is invoked to schedule any ready core-local vCPU, which
is chosen based on additional information provided in the tables.
The second-level scheduler is a fair-share, epoch-based scheduler: it
divides the time within each (configurable) epoch evenly among the
runnable vCPUs into per-vCPU budgets and then applies a simple
highest-remaining-budget-first policy. Second-level vCPU budgets
are replenished when all ready vCPUs have run out of budget.

To summarize, the scheduler hot path in Tableau consists of
little more than a straightforward table lookup in the common case,
which is a minimal and hence extremely efficient approach to sched-
uling. The schedule resulting from the table repeats cyclically until
a new table is installed by the planner. Importantly, it is inherently
predictable: the maximum “blackout time” during which a vCPU
receives no service, and which directly translates into application-
visible latency, is trivially bounded. It is also work-conserving (w.r.t.
core-local vCPUs) owing to the second-level scheduler.

To be clear, the design of Tableau is intentionally simple: our
claim is not that Tableau is a particularly sophisticated approach,
but rather that such a simple, largely static design not only suf-
fices to serve cloud workloads, but that it can actually exceed the
performance of those widely used today, as demonstrated in Sec. 7.

Next, we introduce the actual scheduling logic (i.e., how the
planner generates scheduling tables) and then discuss a concrete
realization of Tableau in Xen in Sec. 6.

5 FINDING A GOOD SCHEDULE QUICKLY
Each VM comprises one or more vCPUs. As input, the planner
requires a specified reserved utilization U and a maximum sched-
uling latency L for each vCPU. These parameters may be selected
arbitrarily. For instance, they can be explicitly specified by an associ-
ated SLA, pre-determined according to price-differentiated service
tiers set by the cloud provider, or simply computed by a fair-share
policy (e.g., U = m

n , where m is the number of CPU cores and
n the number of vCPUs assigned to the host).1 The challenge is
1In particular, note that Tableau does not require more information to be provided
than existing fair-share schedulers such as Xen’s Credit scheduler or Linux’s CFS
scheduler—just as in Credit or CFS, U can be determined automatically based on a
vCPU- or VM-specific weight, the number of cores, and the number of vCPUs in the
system, and L can be given a reasonable default magnitude similar to the scheduling
quantum in Credit or the sched_latency_ns tunable of CFS. In addition, Tableau
allows for more sophisticated or price-differentiated provisioning strategies, but not at
the price of a more complicated default setup or a higher barrier to adoption.

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

to find a static vCPU schedule for the dispatcher that is runtime-
efficient and that satisfies the minimum utilization and maximum
latency guarantees for all vCPUs.

Since the planner can operate outside the restricted confines of
the hypervisor, such as within a supervisory VM, one might be
tempted to use high-level tools such as ILP or SMT solvers to find
schedules. However, we want the table generation process to be
relatively fast (i.e., seconds rather than minutes) even for hundreds
of vCPUs and therefore avoid such heavyweight solutions.

We thus instead map the problem to the well-studied multi-
processor hard real-time scheduling problem, which allows us to
quickly generate reasonably short tables satisfying all constraints
for any possible configuration of VMs that does not over-utilize the
system (i.e., where the sum of allU parameters does not exceed the
number of available cores).

Specifically, we generate tables in two steps. We first model each
vCPU as a periodic task [41] with parameters that are carefully cho-
sen to (i) reflect its specifiedU and L parameters while (ii) ensuring
a short maximum table length. We then simulate a multiprocessor
real-time schedule of the set of periodic tasks representing all vC-
PUs in the system. This simulation results in a repeating table that
achieves the target utilization and ensures the desired scheduling
latency for each vCPU.

Mapping to periodic tasks. A periodic real-time task [41] τ =
(C,T) is characterized by its worst-case execution time C and period
T . The associated correctness criterion is that it must receive (up
to) C time units of processor service in each scheduling interval
[0,T), [T , 2T), [2T , 3T), etc.

When mapping a vCPU (U ,L) to a periodic task τ = (C,T), we
clearly require U = C

T . However, how does a vCPU’s latency goal
L map to an “equivalent” period T ?

Without knowing anything about the final schedule, a suitable
period can be determined by observing that a periodic task must be
scheduled for at least C time units during every period of length T .
The worst-case blackout time (i.e., contiguous interval without any
processor service) hence occurs when a periodic task is scheduled
forC time units at the very beginning of one period, and then sched-
uled next only at the very end of the next period, again for C time
units. For example, a periodic task with (C,T) = (10ms, 100ms)
might be scheduled during [0ms, 10ms) and then again during
[190ms, 200ms), yielding a blackout time of 180ms corresponding
to the blackout interval [10ms, 190ms).

In general, the worst-case blackout time incurred by a periodic
task with period T and cost C is bounded by 2 × (T −C), or equiv-
alently 2 × (1 − U) × T . Thus, a vCPU’s latency goal L can be
converted into a suitable period T by picking any period T such
that T ≤ L

2×(1−U) . (IfU = 1, then the vCPU is simply mapped to a
dedicated pCPU and excluded from further consideration.)

Bounding table lengths. To minimize preemptions, one should
maximize the period. However, simply choosing themaximal period
for each vCPU can result in a periodic task set with an extremely
large hyperperiod, the least common multiple of all task periods.
Since this is also the length at which the dispatching table repeats,
picking periods indiscriminately could even result in exponential
table sizes (if all chosen periods are relatively prime).

To avoid large dispatching tables, we select periods from a set
of candidate periods with a known maximum hyperperiod. Specif-
ically, in our implementation, we searched for a number close to
100ms (=100,000,000 ns) that has a large number of factors larger
than 100µs (since periods smaller than 100µs are hard to enforce due
to scheduling overheads). We chose 102,702,600 ns as the maximum
hyperperiod, which has a large number of integer divisors (186)
above the 100µs threshold. The length of approximately 102ms is
short enough to be generated and replaced quickly.

Thus, if F denotes the set of all integer divisors of 102,702,600
greater than 100,000, we select for each vCPU the largest T ∈ F
such that 2 × (1 −U) ×T ≤ L. Depending on the chosen T , tenants
may observe less scheduling delay than stipulated by L, which is
consistent with it being an upper bound on scheduling latency.

Once each vCPU is represented as a periodic task, the planner
must find a schedule that satisfies the timing constraints of all pe-
riodic tasks, in which case all vCPU utilization and latency goals
are guaranteed to be met. To this end, Tableau uses a progression
of three increasingly expensive techniques: first a very simple and
quick bin-packing heuristic that we expect to be sufficient in most
practical use cases, and then two more involved scheduling tech-
niques that we include primarily for the sake of completeness (i.e., to
ensure that the planner never fails, even in pathological scenarios).

Partitioning. We begin by attempting to partition the task set
(i.e., statically assign tasks to cores) such that no core is overloaded.
Such an approach is a desirable first step as it results in high cache
affinity (since no vCPUs migrate between cores). Partitioning also
has the advantage that additional considerations such as memory
locality on NUMA platforms, special treatment of hardware threads,
or cache interference concerns can be easily incorporated.

Partitioning periodic tasks onto cores is a bin-packing-like prob-
lem that is NP-hard. We use the well-known worst-fit decreasing
heuristic (always assign the next task to the least-utilized core),
which has the benefit that it distributes the load roughly evenly
across all cores in the system.

If the partitioning heuristic succeeds in finding a valid partition,
we simply simulate on each core an earliest-deadline-first (EDF)
schedule until the hyperperiod. Since EDF is optimal on unipro-
cessors [41], the simulation guarantees a schedule satisfying all
utilization and latency goals.

It bears repeating that we expect this partitioning step to succeed
in most cases in practice. This is particularly true in the context of
cloud data centers: since the cloud provider controls the dimension-
ing of the various service tiers, it can arrange for a suitably simple
bin-packing problem by offering only regularly sized VMs.

If partitioning fails, however, we attempt semi-partitioning [4].

Semi-partitioning. Semi-partitioning is a simple extension of par-
titioning. First, we try to partition the task set as before. However,
when encountering a task that cannot be assigned to any core,
instead of giving up, the task is broken up into smaller subtasks
with precedence constraints, which are then easier to partition.
The subtasks represent the task’s fractional allocations on different
cores. At runtime, a split task migrates among the cores to which
its subtasks have been assigned to use the reserved processor time.

The trick is to ensure (i) that the subtasks never execute in
parallel (since they still reflect the same sequential task), and (ii) that

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

no core becomes overloaded. In general, this is not trivial, but many
suitable semi-partitioning schemes have been proposed in recent
years [5, 6, 9, 10, 12, 32, 33, 39].

Without going into too much detail, we simply apply one pro-
posal called C=D task-splitting [12] that virtually always finds a
valid split, even for difficult problem instances that almost fully
utilize all cores [11]. Finding valid C=D task splits is non-trivial,
coNP-hard [22], and computationally demanding in general; how-
ever, due to the fixed table length, it is fast in Tableau’s use case.

If semi-partitioning succeeds, the planner again simulates an
EDF schedule on each core.

Localized optimal scheduling. While the C=D approach is em-
pirically near-optimal [11], i.e., it is virtually always possible to find
workable task splits, there nonetheless exists theoretically a chance
that it might fail. In such a case, which we never encountered in
our evaluation, it is possible to fall back to optimal multiprocessor
real-time scheduling as a last resort [8, 25, 48, 59, 63]. Although
optimal schedulers guarantee the existence of a schedule, we do
not use them as our first choice since they tend to generate many
preemptions and migrations. Instead, we perform semi-partitioning
to the extent possible, and use an optimal scheduler to schedule the
remaining tasks on a minimal subset of cores.

Specifically, we identify two physical cores that are “close” (e.g.,
that share a cache) and turn them into a cluster (i.e., a “double-sized
bin”) that is optimally scheduled. This merging of bins is repeated
if needed until all tasks can be partitioned, split into subtasks, or
assigned to some cluster of cores. The process is guaranteed to stop
when reaching a single cluster encompassing all cores (if the system
is not over-utilized). However, we emphasize that this procedure
is virtually never needed for practical workloads; we include it
simply so that table generation truly never fails (unless the system
is over-utilized, which is a misconfiguration that is rejected).

It is worth mentioning that vCPUs that migrate among two or
more pCPUs due to semi-partitioning (or localized optimal sched-
uling) represent a complication for the second-level scheduler—on
which pCPU should such a vCPU participate in the second-level
scheduling? To avoid costly synchronization, one straightforward
approach is to adopt a “trailing core” policy: migrating vCPUs par-
ticipate in the second-level schedule (only) on the pCPU on which
they last received a guaranteed allocation.

Post-processing. After a schedule has been found, the planner
performs certain post-processing operations before handing the
schedule over to the dispatcher. First, it coalesces allocations below
a certain threshold into a neighboring allocation. This threshold
is determined by the overheads involved in context-switching vC-
PUs, since allocations smaller than the threshold are impossible
to enforce. In the last step, the planner “slices” the table to enable
constant-time lookups, as discussed in the following section.

Finally, while we have not explored this space yet, it is trivial
to add additional post-processing steps. For instance, one might
add a “peep-hole” optimization pass to reduce the number of mi-
grations and preemptions even further. Alternatively, one might
add a pass to encourage or discourage co-scheduling of certain
VMs, e.g., due to performance-counter-based profiles or for syn-
chronization purposes. We leave these interesting opportunities
and extensions to future work.

H
yp

er
vi
so

r

VM 1
(Tier-1)

VM 2
(Tier-1)

VM 4
(Tier-2)

Fair-Share Scheduler
for Core-Local Tier-1 VMs

Hypercall
Table-Driven

Scheduler for Tier-1 VMs

Domain-0

Tableau
Daemon

VM1 VM2

Idle time

If VM blocked
or idle slot

VM 5
(Tier-2)

VM 3
(Tier-1)

Figure 1: Tableau architecture

6 IMPLEMENTATION: TABLEAU IN XEN
The Tableau approach is not tied to any particular system and
can be realized in virtually any modern hypervisor. For evaluation
purposes, we chose the popular Xen hypervisor (version 4.9) as the
basis for our experiments, due to its widespread use in public clouds.

The main components of Tableau in Xen are illustrated in Fig. 1.
Xen consists of a special supervisory VM called domain-0, or dom0,
which has privileged access to the underlying hardware to enable
(i) device access, and (ii) the creation, teardown, and reconfigura-
tion of domains. Accordingly, the planner is realized as a daemon in
the userspace of dom0 (henceforth referred to simply as userspace).

Implementing the scheduling logic in userspace is quite conve-
nient. In particular, the Tableau planner is written in Python using
SchedCAT, an open-source real-time scheduling toolkit [1]. The use
of a high-level language greatly simplifies the rapid exploration of
new post-processing phases and scheduling ideas, potentially even
by non-systems developers or using machine-learning techniques.

In total, our Tableau prototype consists of around 2,350 lines
of new or changed C code in the hypervisor itself, and around
1,600 lines of code in the userspace Tableau daemon. It was possible
to realize Tableau with a relatively small code base because the
hypervisor component is simple by design, and because the planner
heavily relies on existing scheduling logic [11] in SchedCAT.

New scheduling tables are pushed by the planner to the hyper-
visor via a hypercall in a compiled, binary format and used directly
by the Tableau dispatcher. While the dispatcher is conceptually
straightforward, there are certain choices involved in implement-
ing it efficiently. In the following, we highlight four key aspects.
O(1) dispatch. Fig. 2 shows the structure of a Tableau scheduling
table. It consists of per-CPU lists of allocations, which map an
interval of time to a specific vCPU.

An allocation represents a variable-length interval within the
table. To facilitate constant-time lookups, the scheduling table is
accompanied by a slice table. A slice table is comprised of “slices”
of the allocation table, where each slice describes a fixed-sized time
interval of the allocation table. The slice length is chosen such that
each slice overlaps with at most two allocations (and possibly some
idle time between them). This is accomplished by picking, for each
pCPU, a per-CPU slice length equal to the length of the shortest
allocation on that particular pCPU.

The slice table enables O (1) scheduling decisions. First, the dis-
patcher determines the current slice by indexing the slice table
using the current time (modulo the table length), and then it de-
termines which of the two allocations within the slice (or the idle

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

Actual
Schedule

Slice
Table

VM 2 VM 0 VM 3 VM 0

0 2 4 6 8 10 12 14 16

Physical
Representation

IDLE
[2,3)

VM 0
[3,5)

VM 3
[5,9)

VM 0
[9,15)

Schedule Length

VM 2
[0,2)

Figure 2: Tableau table structure. The lookup table enables
constant-time lookups into the physical table structures us-
ing time offsets relative to the start of the table.

time between them) currently need to be scheduled. Allocation and
slice records are aligned to cache lines, so at most two cache lines
are accessed per lookup.

The simple table-driven dispatcher is efficient and inherently
scalable as most memory accesses are to core-local data structures,
especially in the common-case hot path. However, in two excep-
tions, which we briefly sketch next, remote accesses are needed.
Cross-core migrations. When a vCPU has allocations on two
cores (e.g., due to semi-partitioning), and if the gap between these
two allocations in the table is small (or even overlapping by a few
cycles due to timer skew), we must ensure that one core does not
schedule the vCPU until it has been completely de-scheduled on
the other core (to avoid stack corruption).

To this end, for each vCPU, Tableau tracks the core that currently
schedules the vCPU, if any. Before scheduling a vCPU, a core checks
that it “owns” the vCPU. If the vCPU is still marked as “scheduled
elsewhere,” the core that failed to schedule the vCPU sets a field
in the vCPU structure requesting an inter-processor interrupt (IPI)
to be sent when the vCPU is de-scheduled, and schedules either a
vCPU selected by the second-level scheduler or idles until notified.
No locks or cache lines shared by all pCPUs are required.

In the expected case (no overlap of allocations), the only cost
is an atomic write to the vCPU control block (which is already
in cache anyway). In the rare case of a race between allocation
start and end times, a remote memory reference and an IPI are
occasionally incurred, which however does not impact scalability.
Efficient wake-ups. Tableau must also deal with wake-ups of
blocked vCPUs, which may be processed on any core in the system.
For each vCPU, we keep track of the core it currently has an alloca-
tion on (or where it last had an allocation). When a core processes
a wake-up for a vCPU that has a current allocation, it reads this
field and sends an IPI to the responsible core. Similarly, if the vCPU
does not have a current allocation, but is allowed to take part in
second-level scheduling, and the vCPU’s last-used core is currently
idling, then an IPI is sent to said core.

If, however, the vCPU does not currently have an allocation on
any core and is capped (i.e., not eligible to take part in second-level
scheduling), then the wake-up can be safely ignored; when the
next allocation pertaining to the vCPU begins, it will be seen to be
runnable anyway. Again, no locks or globally shared cache lines
are required to realize this optimization.

For simplicity, it is also possible to unconditionally send an IPI; if
IPIs are relatively cheap, then this may be preferable to complicating
the wake-up logic. Our prototype currently uses this approach.
Lock-free table switches. Finally, to avoid adding a lock or a bar-
rier in a hot path, table switches in Tableau are time-synchronized.
Each core has a next_table pointer, which is set when a new table
is pushed. If a core finds this field to be set when the current table
wraps around, then it switches to the new table (otherwise the
current one is reused). However, if the next_table pointer is set dur-
ing a table wrap, some cores may pick up the change while others
may retain the old table, causing an inconsistent schedule. To avoid
such races, we simply ensure that tables are never set during or
close to a table wrap. When a new table is pushed, all next_table
pointers are timed to be set at a point in the middle of the next
round of the current table. Given the scheduling table length in
Tableau (≈ 102ms), this technique avoids any race and all cores
consistently switch to the new table. Two rounds after a new table
has been uploaded, when all cores have switched to the new table,
the previous table is garbage-collected.

In this paper, our evaluation is focused on partitioning, and so
we did not implement second-level scheduling for semi-partitioned
VMs, which means they cannot currently make use of spare idle
cycles. However, this feature is trivial to incorporate into Tableau
as the minimal synchronization needed for cross-core migrations
already exists, as described earlier, and thus its absence is not a
major limitation. Our implementation is available online.2

7 EVALUATION
Our evaluation is aimed at validating the following key claims:
(i) Tableau incurs low scheduling overheads compared to other
Xen schedulers; (ii) it offers both predictability (i.e., consistent,
low latencies) and high throughput in a high-VM-density scenario;
and (iii) planning overheads are acceptable relative to typical VM
commissioning and decommissioning times. We start with the latter.

7.1 Table-Generation Overheads
The time and memory overhead of Tableau’s planner varies de-
pending on (i) the number of VMs, and (ii) the configuration of
individual VMs, and (iii) the number of cores in the system. To-
gether, these parameters determine the number of slots and slices
that need to be generated, optimized, and written to disk.

To showhow these choices affect Tableau’s planner, wemeasured
both the time taken to generate tables, as well as the size of the
generated tables for a varying number of VMs, with all VMs being
assigned one of four latency goals (1ms, 30ms, 60ms, and 100ms).
To stress the planner and test its scalability limits, we performed
these experiments on and for a 48-core Intel Xeon (E7-8857) server,
the largest machine in our lab at the time of writing. Four cores
were dedicated to dom0, and four guest VMs were admitted for
each of the remaining forty-four cores.
Table-generation time. In Fig. 3, the Y axis shows the total time
taken to generate the table (averaged over 100 runs) as a function of
the number of VMs for which the table was generated. The number
of VMs was varied up to a total of 176 VMs (i.e., four VMs per core).

2https://people.mpi-sws.org/~bbb/papers/details/eurosys18/

https://people.mpi-sws.org/~bbb/papers/details/eurosys18/

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 20 40 60 80 100 120 140 160 180
Number of VMs

0

0.5

1

1.5

2

T
im

e
 (

in
 s

e
co

n
d
s)

All VMs 1ms

All VMs 5ms

All VMs 30ms

All VMs 100ms

Figure 3: Table-generation times for a varying number of
VMs with different latency goals. The 30ms and 100ms
curves overlap.

As can be seen in the figure, table-generation time never ex-
ceeds two seconds. We believe this to be acceptable in the con-
text of public clouds where typical VM lifetimes far outweigh VM
startup, teardown, and reconfiguration times [19]. In contexts where
system re-configuration time may be crucial (e.g., Tableau-based
container scheduling, or even high-priority process scheduling),
several optimizations could be made: (i) tables can be incrementally
re-computed on a per-core basis, and (ii) a low-level language such
as C can be used to reduce language runtime overhead. Further-
more, with Tableau, the planner does not necessarily have to reside
on the same machine, i.e., table generation may also be offloaded to
a faster, independent machine, similarly to how jobs are scheduled
across data centers [60], and it is trivially possible to centrally cache
tables for common configurations that are frequently reused.
Additional reconfiguration delays. If the planner resides locally
in dom0, where it is triggered on-demand, then Tableau introduces
a planning delay to VM startup, teardown, and reconfiguration
operations. However, we emphasize that the planning overhead
does not affect the performance of VMs once they have commenced
execution (i.e., it increases only their provisioning time). As VM
creation under Xen already takes many seconds, even without
accounting for the time it takes the guest OS to actually boot up
(nor any time spend on fetching a VM image from remote storage),
we deem even the longest table-generation delay reported in Fig. 3,
which is two seconds, to still be acceptable.
Memory overheads. Fig. 4 shows the table size (in MiB) on the Y
axis, as a function of the number of VMs on the X axis. The four
curves show the table size when all VMs are assigned the same
latency goal of 1ms, 30ms, 60ms, and 100ms, respectively.

As can be seen in the figure, the memory overhead for all configu-
rations was below 1.2MiB, which only occurs for a fairly demanding
case of every VM having a latency goal of 1ms. We consider this
to be a negligible overhead for modern server-class machines with
hundreds of gigabytes, and even terabytes, of RAM.

7.2 Scheduler Runtime Overheads
We now present microbenchmarks comparing Tableau’s scheduler
overheads with three different schedulers in Xen.
Platform. We used a 16-core, 3.2 GHz Intel Xeon (E5-2667) server
(comprising two sockets with eight cores each) with 512GiB of
RAM, running Ubuntu 16.04.3 LTS (Linux kernel version 4.4.0) on
Xen 4.9. We employed an identical client machine, connected on

0 20 40 60 80 100 120 140 160 180
Number of VMs

0

0.5M

1M

1.5M

2M

T
a
b
le

 S
iz

e
 (

in
 M

iB
) All VMs 1ms

All VMs 5ms

All VMs 30ms

All VMs 100ms

Figure 4: Generated table size for a varying number of VMs
with different latency goals. All but the 1ms curve overlap.

the same network via 10Gbit/s Ethernet, as a load generator. We
disabled all CPU power-saving features for our evaluation to avoid
performance unpredictability.
Schedulers. We compared our implementation of Tableau with
three stock schedulers in Xen (Credit, Credit2, and RTDS). Credit is
the default scheduler in Xen and is a weighted proportionate-fair-
share scheduler. That is, each VM is allocated credits proportional to
a configuredweight, which it “burns”when it executes. Additionally,
Credit gives VMs that wake up from an I/O operation a “boost” in
priority. Xen’s more recent Credit2 scheduler extends the original
Credit design with the goal of improving responsiveness, and does
this primarily by eliminating Credit’s priority boosting as it is now
understood to cause performance unpredictability. RTDS, another
recent addition to Xen, is a real-time scheduler that, like Tableau,
is also based on the periodic task model [41]. However, in contrast
to Tableau, and similar to Credit, RTDS is a dynamic scheduler
(i.e., it makes all decisions online) based on an EDF policy. RTDS
is an interesting baseline to compare against because it provides
similar capabilities in terms of predictable control over latency and
utilization, while representing an entirely different set of tradeoffs
due to its dynamic nature.
Scheduler setup.Due to the number of tunable parameters in each
of the evaluated schedulers and the resulting vast configuration
space, we did not attempt to exhaustively evaluate every possible
parameter combination. Rather, our evaluation is based on a single
setup that is intended to be representative of the kind of workloads
Tableau is designed to support.

Specifically, on our 16-core server, we assigned four single-vCPU
VMs per core (i.e., each with 25% CPU utilization), with four cores
dedicated to dom0. Credit was configured according to documented
best practices. In particular, we used a global timeslice of 5ms
under Credit as the default 30ms value is known to be non-ideal for
I/O workloads [18]. Under Tableau, to allow for a reasonably fair
comparison with Credit, we chose a maximum scheduling latency
of 20ms since Credit with a 5ms timeslice will, in the presence of
four VMs per core, replenish all credits roughly once every 20ms.
This results in the planner picking a period of roughly 13ms with
a budget of about 3.2ms. To enable a direct comparison, RTDS was
configured to match the parameters of Tableau.

Due to differences in capabilities of the various schedulers, we
evaluate two distinct scenarios: a “capped” scenario, where VMs
are configured with CPU-usage upper bounds (supported by Credit,
RTDS, and Tableau), and an “uncapped” scenario, where a VM’s

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

CPU usage is not bounded (supported by Credit, Credit2, and
Tableau). We used Ubuntu 16.04.3 LTS as the guest OS.
Overhead results. Under each scheduler, we traced the runtime
cost of key scheduling operations in an I/O-intensive scenario,
where each VM ran an I/O-intensive workload based on the well-
known stress benchmark [68] for a duration of 60 seconds. Over-
head samples were collected using Xen’s built-in tracing framework
by adding tracepoints around key operations within the scheduler.

Table 1 shows themean overhead (in µs) of three scheduler opera-
tions on our 16-core server: (i) the time taken to make a scheduling
decision, (ii) the time taken to process wake-up interrupts, and
(iii) the time taken to perform any operations after de-scheduling
a vCPU, such as sending re-schedule IPIs to another core.

Table 1: Average runtime overheads (in µs) for three key
scheduler-related operations on a 16-core, 2-socket server.

Credit Credit2 RTDS Tableau

Schedule 8.08 3.51 2.86 1.43
Wakeup 2.12 5.19 3.90 1.06
Migrate 0.32 5.55 9.42 0.43

Our focus on runtime efficiency in Tableau’s design (Sec. 3) and
the optimized, core-local implementation of Tableau’s dispatcher
(Sec. 6) is clearly reflected in its low scheduler overheads. We ob-
serve that Tableau indeed incurs substantially lower overheads
compared to other schedulers: the mean scheduling overhead un-
der Tableau is around 5.6x, 2.4x, and 2x lower than under Credit,
Credit2, and RTDS, respectively. Concerning post-scheduling op-
erations (“Migrate”), recall that Tableau may occasionally need to
send an IPI after de-scheduling a vCPU. As expected, this results
in only a negligible increase in the overhead (approximately an
additional 100ns on average compared to Credit in our example).

RTDS incurs significantly higher overhead (over 9µs) for post-
schedule work due to requiring the acquisition of a global lock
when load-balancing vCPUs. To highlight this bottleneck, we also
collected overhead data on a 48-core server machine with four
sockets (each comprised of 12 cores). Table 2 shows the observed
overheads. It is obvious that RTDS’ global lock does not scale well:
on average, RTDS spends over 168µs while attempting to migrate
a VM each time it is preempted. We do not consider this machine
any further in the remainder of this section.

Table 2: Average runtime overheads (in µs) for three key
scheduler-related operations on a 48-core, 4-socket server.

Credit Credit2 RTDS Tableau

Schedule 16.40 4.70 4.39 2.49
Wakeup 7.07 5.61 19.16 1.82
Migrate 0.42 18.19 168.62 0.66

Finally, Table 1 shows themean overhead for processingwakeups
to be 2× lower than under Credit, almost 5× lower compared to
Credit2, and over 3× lower than under RTDS. This is a consequence
of Tableau’s fast wakeup handling (Sec. 6), which uses the table to
determine which CPU to send an IPI to.

No BG I/O BG CPU BG
0

5

10

15

20

25

30

35

40

45

In
tr

in
si

c
La

te
n
cy

 (
m

s)

Credit

RTDS

Tableau

(a) Capped VMs

No BG I/O BG CPU BG
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

In
tr

in
si

c
La

te
n
cy

 (
m

s)

Credit

Credit2

Tableau

(b) Uncapped VMs

Figure 5: Maximum scheduling delay as measured by
redis-cli. “BG” denotes background workload.

To summarize, the advantages of Tableau’s design choices are
reflected in its efficient runtime compared to other schedulers. This
is the result of moving VM budget and latency enforcement to an
offline planner, using per-core data structures, and the use of a
minimal table-driven dispatcher.

7.3 Comparing Scheduling Delay
To understand the scheduling delays induced by the existing Xen
schedulers and Tableau, we used (i) the popular redis-cli work-
load with the --intrinsic-latency option, and (ii)measured the
ping latency between our client machine and one of the VMs. The
two workloads were chosen as they allow insight into the per-
formance of respectively CPU-bound and sporadically activated,
network-I/O-centric VMs under each scheduler. In the following, we
present measurements from a single vantage VM. The vantage VM
did not receive any special treatment or configuration advantages
and is thus representative of general scheduler performance.
redis-cli intrinsic latency. redis-cli is a command-line in-
terface distributed as part of the redis key-value store. We ran it
within our vantage VM and measured the intrinsic latency of the
system. When measuring the intrinsic latency, redis-cli runs a
tight CPU-bound loop and measures the delay between iterations,
thus measuring if any delays occur due to the scheduler.

To isolate the effect of the VM scheduler, we ran the tool with the
highest SCHED_FIFO priority to avoid interference arising from
the Linux scheduler in the guest VM. We evaluated both capped
and uncapped scenarios, with four VMs per core, without any
background workload, with an I/O-intensive background workload,
and with a CPU-intensive background workload. The results are
illustrated in Figs. 5(a) and 5(b).

In the capped scenario shown in Fig. 5(a), regardless of the back-
ground workload, the scheduler causes scheduling delays as it
forcibly cuts off CPU access to VMs once they exceed their assigned
amount. In the case of Credit, the VM experiences delays of up
to almost 44ms. Under RTDS, configured as discussed in Sec. 7.2,
this results in around 10ms in the best case with no background
workload (i.e., the VM runs at the beginning of each period); more

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

No BG I/O BG CPU BG
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

n
cy

 (
m

s)

Credit Credit2 Tableau

(a) Uncapped VMs, Average

No BG I/O BG CPU BG
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

n
cy

 (
m

s)

Credit RTDS Tableau

(b) Capped VMs, Average

No BG I/O BG CPU BG
0

10

20

30

40

50

60

70

80

La
te

n
cy

 (
m

s)

Credit

Credit2

Tableau

(c) Uncapped VMs, Maximum

No BG I/O BG CPU BG
0

10

20

30

40

50

60

70

80

La
te

n
cy

 (
m

s)

Credit

RTDS

Tableau

(d) Capped VMs, Maximum

Figure 6: Average and maximum-observed round-trip ping latencies. “BG” denotes background workload.

latency (up to 13ms) was observed in the presence of a background
workload. Finally, under Tableau, we always see about 10ms of
scheduling delay, regardless of background workload. In this exper-
iment, RTDS controls scheduling latency just as well as Tableau,
but we will later show that it does not achieve the same throughput.

In the uncapped scenario shown in Fig. 5(b), VMs are not rate-
limited and are allowed to consume additional idle cycles if available.
As a result, when no background workload is present, all schedulers
achieve sub-millisecond scheduling latencies, and the correspond-
ing bars are barely visible in Fig. 5(b). However, latency becomes
substantially worse under Credit and Credit2 as a background work-
load is introduced. In this case, the responsibility of maintaining
low scheduling latency for all VMs falls on the scheduler, and as
can be seen, it does not work well in high-density scenarios: we
observed delays as high as 220ms under Credit. Credit2 fares well
in the presence of a CPU-intensive background workload, but not
so well in the presence of the I/O-intensive workload. In contrast,
under Tableau, the burden of meeting scheduling latency bounds is
the responsibility of the semi-offline planner, which is oblivious to
background workloads. As a result, Tableau exhibits at most 10ms
of scheduling delay regardless of background workload.

Ping latency. To cross-validate our findings, we also measured
the average and maximum observed ping latency from our client
machine to the vantage VM. ICMP echo requests are handled di-
rectly within the guest kernel, which eliminates any dependence
on the guest scheduler, but can only be processed when the VM
is dispatched by the VM scheduler. As a result, with a controlled
network like in our setup, the ping latency is dominated by (and
is a good proxy for) the scheduling latency incurred by a VM in
reaction to wake-ups triggered by external I/O events.

We again evaluated both capped and uncapped scenarios, with-
out any background workload, with an I/O-intensive background
workload, and with a CPU-intensive background workload. The
experiment setup consisted of eight threads on our client machine,
each sending 5,000 randomly-spaced pings with delays ranging
from zero to 200ms. The resulting 40,000 samples were aggregated
to determine the average and the maximum observed ping latency
for each configuration. The results are reported in Figs. 6(a)–6(d).

In the uncapped scenario, without a background workload, the
average latency (Fig. 6(a)) is low for all schedulers (around 100 µs) as
the VM can always react immediately to incoming packets. In con-
trast, the capped scenario (Fig. 6(b)) shows the impact of the table’s
rigid structure, which results in Tableau exhibiting clearly higher av-
erage latency (but well below the configured latency goal of 20ms).

With an I/O workload in the uncapped scenario, since back-
ground VMs frequently block, the vantage VM is able to leverage
the resulting idle cycles to achieve a low average latency (Fig. 6(a)).
In the case of a CPU-bound background workload, however, there
are no additional idle cycles to be had and the vantage VM can
only execute during its own slots, which are active only periodi-
cally. Thus, the average latency under Tableau is noticeably higher
(Fig. 6(a)), but still well below the configured latency goal, since it is
determined by the gaps between slots in the table. In contrast, un-
der the other schedulers, which are dynamic in nature and employ
heuristics that favor I/O workloads, the vantage VM is able to (on
average) respond almost immediately since it is allowed to preempt
the predominantly CPU-bound background VMs. However, as we
show in Sec. 7.4, these same features can also reduce application
throughput and lead to increased unpredictability.

In the uncapped scenario, the maximum observed latencies in
an otherwise idle system are around 200 µs (Fig. 6(c)). However,
once a background workload is introduced, the maximum observed
latency increases under all schedulers. Under Credit, we observe
latencies approaching 75ms in the presence of an I/O-intensive
background workload (Fig. 6(c)). Credit2 continues to provide good
tail latency characteristics, but as we will show in Sec. 7.4, it is
unable to maintain high throughput in this scenario.

In the capped scenario (Fig. 6(d)), the maximum observed la-
tencies under Credit are significantly higher even without any
background workload. This is simply because, while VMs are not
running any benchmark, they still require CPU time occasionally
for system processes. As a result the vantage VM may, under rare
circumstances, exhaust its budget, while simultaneously having
to wait for the other three background VMs on the same core to
exhaust their budget, resulting in up to 15ms of scheduling latency.
While in principle RTDS is also susceptible to the same worst-case

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

behavior, the necessary conditions did not trigger during our ex-
periment because they occur only very rarely.

With an I/O background workload active, Credit exhibits tail
latencies of around 30ms (Fig. 6(d)). On the other hand, RTDS
and Tableau enable accurate control over the scheduling delay.
The maximum observed ping latency under RTDS is around 9ms
(Fig. 6(d)), somewhat less than the delay allowed in each period.
Similarly, regardless of the background workload, Tableau never
exhibits latencies above 10ms (Fig. 6(d)), which reflects the structure
of the table that the planner created for this workload.

To summarize, Credit shows substantially increased tail latency
under load in a high-density scenario. While Credit2 and RTDS
show good latency characteristics, they struggle to do so while
maintaining high throughput, as we show next.

7.4 Comparing nginx HTTPS Throughput
We now present a comparison of Tableau, RTDS, Credit, and Credit2
in terms of their respective impact on application throughput and
latency, as exemplified by the ngingx web server.

We used wrk2 [2], an extension of the well-known wrk HTTP
load generation tool, that allows for accurate measurement of tail la-
tencies while accounting for the Coordinated Omission problem [66].
Setup. Our setup again comprised of four single-core VMs per core
on twelve cores of our two-socket, 16-core server (i.e., a total of 48
VMs), with the remaining four cores being dedicated to dom0. Each
VM was assigned a virtual network interface using Intel’s SR-IOV
technology that allowed it to bypass the I/O scheduler in dom0.

The vantage VMwas hosting an nginx server that served a small
PHP “application” via HTTPS. The PHP application simply sends
a randomly selected file of a given size (1 KiB, 100KiB, or 1MiB)
chosen from a 1GiB dataset. To minimize measurement noise, all
files were stored in tmpfs. Similarly, nginxwas assigned a real-time
priority to take the guest OS’s scheduler out of the picture.

The client machine hosted the wrk2 tool, which generated re-
quests for a specific file size (1 KiB, 100KiB, or 1MiB) at a given
rate, and measured the achieved throughput and latency character-
istics of the requests. We increased the request rate progressively
until the server was saturated. As in the previous experiments, we
evaluated both capped and uncapped scenarios, with and without
an I/O-intensive background workload.
Graphs. The results are illustrated in Fig. 7, comprising three
columns and six rows. The first three rows (Fig. 7 (a)–(i)) show to
the capped scenario and the last three rows (Fig. 7 (j)–(r)) show the
uncapped scenario. Each row corresponds to the results for either
1 KiB files, 100 KiB files, or 1MiB files. Within each row, the three
columns correspond to the mean, 99th percentile, and the maximum
observed latency, respectively, versus the observed throughput.

Each graph comprises three curves for Credit, Tableau, and either
RTDS (for capped scenarios) or Credit2 (for uncapped scenarios).
The X-axis shows the observed throughput, while the Y-axis shows
a latency metric. Thus, lower is better (i.e., less latency), as is being
further to the right (i.e., higher throughput). At some point, the
server can no longer keep up with the request rate, and the curve
peaks upwards as queueing delays start to dominate.
Capped VMs (Fig. 7 (a)–(i)). In the following, we discuss results
for 1 KiB and 100 KiB files (the first two rows); we revisit Tableau’s

performance with 1MiB files (Fig. 7 (g)–(i)) later in Sec. 7.5. We
make the following key observations.

Tableau provides good tail latencies. The 99th percentile and the
maximum observed latency under Tableau are lower than under
Credit and RTDS (Fig. 7 (b)–(c) and Fig. 7 (e)–(f)). While for low
request rates, Credit and RTDS’s tail latencies are sometimes on
par with Tableau’s, they quickly increase with the request rate. In
contrast, Tableau continues to maintain relatively stable tail-latency
characteristics until the server reaches its peak throughput.

Tableau supports higher SLA-aware peak throughput. In both
the 1KiB and 100KiB scenarios, Tableau achieves a higher peak
throughput. In addition, Tableau’s latency begins to creep upwards
much later than under Credit and RTDS. Thus, given a latency-based
service-level agreement (SLA), Tableau supports a higher SLA-aware
throughput. For example, for 1KiB files, given an SLA that mandates
a 99th-percentile latency of 100ms or lower, the peak throughput
for RTDS and Credit is around 1,000 and 1,400 requests per second,
respectively (see Fig. 7 (b)). Tableau can support up to 1,600 requests
per second while satisfying the SLA.

Tableau’s rigidity affects its mean latency. Themean latency (Fig. 7
(a) and (d)) under Tableau is higher than under either Credit or RTDS
for low request rates. This is expected in a table-driven scheduler, as
a request arriving just after the end of a VM’s slot has to wait until
the next slot of the VM to be processed, while dynamic schedulers
like Credit and RTDS can react to the request immediately. However,
both schedulers become overwhelmed as the request rate increases,
while Tableau’s rigidity becomes advantageous and translates into
stability at higher request rates.

RTDS struggles to sustain high throughput. In the presence of an
intense I/O background workload that causes frequent scheduler
invocations, RTDS achieves significantly lower peak throughput
than either Credit or Tableau. This is apparent for all three file sizes,
and highlights that high VM scheduling overheads can substantially
reduce guest application performance.

Credit is significantly less predictable. Mean, 99th, and maximum
observed latencies under Credit start to increase significantly be-
fore peak throughput is reached. For instance, in graphs (b), (c), (e),
and (f) of Fig. 7, Credit exhibits a noticeable upwards slope before
peaking (note the log scale), which reflects upon increasing unpre-
dictability as the system becomes increasingly busy. This supports
the observation that Credit’s I/O boosting heurstic can backfire
when faced with I/O-intensive workloads.

Uncapped VMs (Fig. 7 (j)–(r)). Recall that, in the uncapped sce-
nario, Tableau allows each VM to execute in any idle time available
on its core, with multiple contending VMs being allocated idle
time in a round-robin manner. The challenge for the scheduler is
thus to ensure that interference and overheads do not consume
precious CPU cycles, thereby degrading the performance of the
system. This is where Tableau’s low-overhead, table-driven design
shines: it maintains stable latency characteristics for significantly
higher throughputs compared with Credit and Credit2 for all file
sizes. We detail our observations in the following.

Tableau supports significantly higher throughput. In all cases,
Credit’s performance starts to degrade already at a very low through-
put. While Credit2 performs well at low throughput, the peak
throughput achieved under Credit2 is still considerably less than

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

Credit Tableau RTDS Credit2

0 200 400 600 800 1000 1200 1400 1600 1800

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (a)

0 200 400 600 800 1000 1200 1400 1600 1800

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

M
a
x
.

La
te

n
cy

 (
m

s) (c)

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (d)

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(e)

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

M
a
x
.

La
te

n
cy

 (
m

s) (f)

10 20 30 40 50 60 70 80 90 100

Throughput (reqs/sec) (size=1M)

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (g)

10 20 30 40 50 60 70 80 90 100

Throughput (reqs/sec) (size=1M)

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(h)

10 20 30 40 50 60 70 80 90 100

Throughput (reqs/sec) (size=1M)

102

103

104

M
a
x
.

La
te

n
cy

 (
m

s) (i)

0 500 1000 1500 2000 2500

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (j)

0 500 1000 1500 2000 2500

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(k)

0 500 1000 1500 2000 2500

Throughput (reqs/sec) (size=1K)

100

101

102

103

104
M

a
x
.

La
te

n
cy

 (
m

s) (l)

0 100 200 300 400 500 600 700 800 900

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (m)

0 100 200 300 400 500 600 700 800 900

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(n)

0 100 200 300 400 500 600 700 800 900

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

M
a
x
.

La
te

n
cy

 (
m

s) (o)

0 20 40 60 80 100 120 140

Throughput (reqs/sec) (size=1M)

102

103

104

M
e
a
n
 L

a
te

n
cy

 (
m

s) (p)

0 20 40 60 80 100 120 140

Throughput (reqs/sec) (size=1M)

102

103

104

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(q)

0 20 40 60 80 100 120 140

Throughput (reqs/sec) (size=1M)

102

103

104

M
a
x
.

La
te

n
cy

 (
m

s) (r)

Figure 7:Mean (first column), 99th percentile (second column), andmaximum (third column) observed latency for capped (first
three rows) and uncapped scenarios (last three rows), for 1KiB, 100KiB, and 1MiBfiles (see y-axis labels), with an I/O-intensive
background workload and with varying throughput.

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

Credit Tableau RTDS Credit2

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
e
a
n
 L

a
te

n
cy

 (
m

s) (a)

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(b)

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
a
x
.

La
te

n
cy

 (
m

s) (c)

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
e
a
n
 L

a
te

n
cy

 (
m

s) (d)

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

(e)

0 100 200 300 400 500

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
a
x
.

La
te

n
cy

 (
m

s) (f)

Figure 8:Mean (first column), 99th percentile (second column), andmaximum (third column) observed latency for capped (first
row) and uncapped VMs (second row) for 100KiB files with a cache-thrashing background workload and varying throughput.

the peak throughput achieved under Tableau. For example, with
100 KiB files and a 99th-percentile SLA of 100ms (Fig. 7 (n)), Credit
supports only 50 requests per second, Credit2 supports up to 500
requests per second, but Tableau is able to support more than 800
requests per second, about 60% more than Credit2.

Tableau’s second-level scheduler is effective. From Fig. 7 (n) and
Fig. 7 (e), we can see that Tableau achieves a higher peak through-
put of around 850 requests per second in an uncapped scenario
compared with around 600 requests per second in the capped sce-
nario. This is due to Tableau’s second-level scheduler, which allows
the vantage VM to use any idle cycles in the system in addition
to its pre-determined slots. To evaluate the contributions of the
second-level scheduler, we traced Tableau’s scheduling decisions
while fixing the request rate at 700 requests per second (supported
by Tableau only in the uncapped scenario). We observed that over
85% of the scheduling decisions resulting in the vantage VM’s ex-
ecution were made by the level-2 round-robin scheduler. That is,
idle cycles are efficiently and opportunistically allocated by Tableau
to other VMs on the same core, which translates into improved
throughput without a significant latency penalty.

Cache-thrashing background workload.We now contrast how
the schedulers perform in the presence of stress’s cache-thrashing
background workload, which is fully CPU-bound. Fig. 8 shows the
results for 100 KiB files; one row for the capped scenario (Fig. 8 (a)–
(c)) and one row for the uncapped scenario (Fig. 8 (d)–(f)). Results
for other file sizes were similar; we summarize the main trends.

All schedulers perform similarly in the capped scenario. Since
the background workload now is fully CPU-bound—none of the
cache-thrashing background VMs ever voluntarily triggers the VM
scheduler—the rate of scheduler invocations, and hence the impact
of scheduling overheads, is much reduced. As a result RTDS fares
much better, and can perform more or less as well as the other
schedulers. Fundamentally, Fig. 8 (a)–(c) show a case where the VM

scheduler is hardly a bottleneck, and hence it is not surprising to
see little differentiation among the schedulers.

Credit outperforms Credit2 due to effective boosting in the un-
capped scenario. Credit’s boosting heuristic was ineffective in the
prior experiment (Fig. 7) since all VMs were I/O-bound and thus
all (or effectively none) were prioritized. However, with a cache-
thrashing background workload, Credit’s boosting heuristic works
as intended and plays in favor of the vantage VM, which is the sole
VM performing I/O. On the other hand, Credit2, which does not
explicitly favor I/O workloads, achieves a lower peak throughput,
as can be seen in Fig. 8 (d)–Fig. 8 (f).

Finally, Tableau outperforms both Credit and Credit2 in the un-
capped scenario. This is where Tableau’s rigid table-driven design
works best compared to Credit and Credit2’s dynamic, heuristic-
based designs, which struggle to maintain fairness given the aggres-
sive CPU demand of the uncapped background workload. When
comparing the peak throughput under Tableau in the capped and
uncapped scenarios (first row vs. second row), we see no drop in
Tableau’s peak throughput (around 500 requests per second in both
cases) as the vantage VM is guaranteed its utilization in both cases,
while both Credit and Credit2 see a significant reduction in through-
put due to increased interference from uncapped background VMs.

This experiment nicely demonstrates Tableau’s advantage in
ensuring that each VM receives its guaranteed minimum amount
of service no matter what the rest of the system is doing.

7.5 Discussion and Limitations
A rigid table-driven scheduler like Tableau is not ideal for certain
scenarios. We next discuss some of the limitations of Tableau.

Lower I/O device utilization in certain capped scenarios.One
of the drawbacks of a table-driven scheduler is that I/O requests are
sent in periodic bursts. For example, when a VM’s slot is active, it is
able to enqueue packets in the network interface’s ring buffer, but

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

when the VM is preempted for a relatively long time, the network
device drains its buffer and then idles. This is inefficient and results
in lower throughput than a dynamic scheduler, which can ensure a
more even distribution of VM execution over time, resulting in a
better-utilized I/O device given the same CPU utilization.

This effect is evident in Fig. 7 (g)–(i), which shows a capped sce-
nario with 1MiB files where Credit achieves higher peak through-
put compared to Tableau. This does not occur for smaller file sizes
as they require less bandwidth (i.e., utilizing the network efficiently
is not so important because CPU utilization is the bottleneck when
serving small files). However, for larger files, transmission time
becomes significant and the VM must work harder to keep the
network device sufficiently busy to ensure high throughput.

Overall, if the goal is to maximize I/O device utilization, a rigid
table-driven scheduler is not ideal. However, Tableau’s second-
level scheduler for uncapped VMs can help with overcoming this
inefficiency, as is evident in Fig. 7 (p)–(r).

Higher mean latencies in capped settings. While Tableau pro-
vides high throughput and predictable tail-latency characteristics,
it can be seen in Fig. 7 (a), (d), and (g) that it performs worse com-
pared to Credit in terms of mean latency in capped settings. This is
not unexpected since capped VMs under Tableau do not have the
luxury of responding to requests at any point in time; rather, they
are limited to carefully controlled windows of time where they are
allowed to process requests. This means that requests arriving in
the blackout period between slots incur higher latencies, resulting
in increased average latency. However, as can be seen in the other
graphs in Fig. 7, dynamic schedulers come with their own trade-
offs, namely lower throughput in the face of frequent scheduler
invocations due to more complex, high-overhead scheduling logic.

Other sources of unpredictability.Whilewe focus on one source
of performance variability, CPU scheduling, it is merely one piece of
the predictability puzzle. Modern server-class machines have many
other sources of such performance variability, including shared-
cache interference, queueing delays in shared I/O schedulers, or
limitations in guest OSs. Case in point, in the experiments discussed
in Sec. 7.4 we specifically removed the guest OS scheduler and disk
I/O from consideration to minimize measurement noise. A complete
system that comprehensively addresses all such issues is beyond
the scope of this paper, but an important challenge for future work.

Semi-partitioned VM performance. In this paper, we focus on
the (common) case of fully partitioned vCPUs and do not evaluate
migrating vCPUs, that is, VMs that are forced to frequently migrate
across multiple cores due to semi-partitioning or localized optimal
scheduling (or other table generation methods). To reiterate, we
consider semi-partitioning to be rare in a controlled cloud setting
as operators can pick vCPU utilizations that are easy to partition.

However, in the rare cases where semi-partitioning is unavoid-
able, there is undoubtedly a performance penalty to be paid by
frequently migrating VMs. While Credit, Credit2, and RTDS also
frequently migrate vCPUs, there is a significant difference: under
these schedulers, all vCPUs are (non-deterministically) subject to
occasional migration, so the performance penalty evens out over
time. In contrast, in Tableau, migration costs are borne exclusively
by vCPUs with allocations on multiple pCPUs, which is unfair.

There are several ways around this imbalance. For one, any
split vCPU could be “compensated” for the increased overheads by
increasing its utilization by a few percentage points and factoring
this added resource usage into the cost. Alternatively, one could
periodically re-generate the scheduling table to make sure that all
vCPUs take a turn being split across cores. It will be interesting to
explore the involved tradeoffs in more detail in future work.

8 RELATEDWORK
The literature on virtualization is too vast for a comprehensive
review. With the advent of cloud computing technologies, even
the specific problem of vCPU scheduling has received significant
attention in the past decade. In the following, we primarily focus
on work that targets similar goals as Tableau, i.e., predictable per-
formance and/or high-density workloads. In addition, we discuss
in brief techniques that solve complementary problems, but which
can be incorporated into Tableau’s table-driven design, as well as
research that highlights limitations of Tableau.
Real-time multi-core VM scheduling. The use of hypervisors
in real-time systems is common to support legacy applications, and
there exists much prior work on real-time multi-core VM schedul-
ing targeting such workloads. For example, to support applications
with QoS and soft real-time requirements (e.g., telephony, audio
processing), Lee et al. [38], Chen et al. [15], and Cheng et al. [16]
modify the Xen scheduler to expose control over scheduling latency
directly to VMs, similar to Tableau. However, their work does not
deal with multi-tenant cloud environments with high VM density.
Hard real-time schedulers for virtualization platforms, such as the
work of Lee et al. [36], primarily focus on ensuring a priori guaran-
tees for applications to meet their deadlines [44], and are willing to
sacrifice throughput to reach this goal. The RTDS scheduler in Xen
also derives from real-time VM scheduling and was developed in
the RT-Xen project [74, 75]. It bounds scheduling latency while fo-
cusing on improving VM throughput, but unfortunately, as shown
in Sec. 7, it is unable to maintain performance under high-density
scenarios with frequent scheduler invocations, and does not scale
well to large server machines. In contrast to the aforementioned
works, while Tableau uses techniques from hard real-time sched-
uling theory, it is squarely aimed at virtualization for data center
environments. Other works that apply real-time scheduling theory
to schedule cloud VMs include proposals by Cucinotta et al. [20]
and Lin and Dinda [40], however, these approaches differ distinctly
in their designs from Tableau, which uses table-driven scheduling.
Evaluating hypervisor schedulers. The deficiencies of popu-
lar VM schedulers, when it comes to the performance of latency-
sensitive applications, have been well studied [18, 51, 77] with a
lot of emphasis on tuning the various parameters available to im-
prove the performance of particular workloads [14, 37]. While we
present a more recent evaluation of some of the tradeoffs of Xen’s
existing VM schedulers, specifically in high-density environments,
an exhaustive evaluation of the available parameter space in these
schedulers is beyond the scope of this work. Rather, we employ de-
fault parameter settings and incorporate well-known best practices,
as would typically be the case in real-world deployments.
I/O responsiveness. I/O latency is an important goal of any VM
scheduler as I/O workloads are the dominant type of workloads

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

deployed in public clouds. There has been significant work on
changing existing schedulers to improve the responsiveness of such
applications [29, 78]. A small sampling of these include works that
use dynamic profiling of applications to improve performance [61],
that modify Credit’s boosting mechanism [26], tweak the sched-
uler timeslice [76], as well as partition applications based on per-
formance profiles in order to better isolate them against interfer-
ence [21]. However, in high-density scenarios, such heuristic- or
profiling-driven scheduler enhancements come with the risk of
difficult to predict, potentially large runtime overheads. In contrast,
Tableau provides delay guarantees with little runtime overhead.

Most closely related to our work on Tableau is SageShift [65],
which has similar aims as Tableau: improving application latencies
while increasing resource utilization. SageShift does this through a
strict admission-control component to determine whether a new
VM’s SLA can be met. Once admitted, the VM’s SLA is guaranteed
via a VM scheduler that dynamically adjusts, at runtime, both the
utilization and scheduling delay of the VM. While a comparison
with SageShift would be interesting, we were unable to locate any
publicly available source code for the project.

Complementary work. Due to its separate planning phase, there
are several areas of work whose techniques may be used to further
improve Tableau’s performance. In this paper, we presented a simple
approach to generating performant tables but this can be extended
further, including NUMA-aware scheduling techniques [57, 72],
intelligent co-scheduling of VMs for parallel applications [58], and
lock-aware scheduling techniques [71, 79].

Adaptive techniques, instead of modifying the scheduler itself,
dynamically reconfigure VMs based on their runtime behavior. Var-
ious techniques have been presented using (for instance) control
theory [53] andmachine learning techniques [14]. Another example
is DeepDive [50], which identifies and mitigates inter-VM interfer-
ence by controlling their placement. Similar adaptive techniques
can be used with Tableau to periodically optimize scheduling tables.
In fact, Tableau enables the use of high-level languages and mature
libraries to rapidly prototype such techniques.

Recent work on LightVM [47], a redesign of Xen’s control plane,
showed that the majority of VM creation, teardown, and recon-
figuration overheads in Xen results from performance-unfriendly
design choices and that these operations can be sped up signifi-
cantly. LightVM is complementary to Tableau and combining them
would yield an immediate improvement in VM reconfiguration
times; however, this will require a more optimized implementation
of Tableau’s planner (see Sec. 7.1) to match the improvements real-
ized by LightVM, as otherwise the cost of replanning the schedule
could become a dominant bottleneck. However, we believe there is
indeed much room for improving Tableau’s prototype planner.

Finally, Tableau’s design is hypervisor-agnostic. It could, for ex-
ample, be realized in NOVA [64], a secure, capability-based micro-
hypervisor that minimizes the trusted computing base of a virtu-
alization environment. Tableau’s focus on simplicity and use of a
userspace planner and load-balancer are well-aligned with NOVA.

Containers and unikernels. Recently, there has been a shift to-
wards lightweight, container-based compartmentalization [7, 24,
49, 55, 62, 70, 73] and unikernels [34, 46], which enable lightweight,
purpose-built “OS-less” VM images.

With regards to lightweight containers, we believe that they
do not invalidate Tableau’s design—the Tableau approach can be
easily applied to schedule containers instead of vCPUs, provided
the containers are sufficiently long-running. That is, for systems
where the configuration of application images is relatively static,
Tableau remains applicable. In particular, combined with container-
orchestration tools like Kubernetes [13], Tableau may be used to
declaratively specify performance requirements of containers run-
ning on a cluster. With regards to unikernels, as they are built to be
lightweight and application-specific, combining them with Tableau
would provide significantly increased performance predictability.

However, we note that Tableau is not applicable for certain uses
of containers and unikernels (e.g., on-demand spawning of con-
tainers to service individual requests [45]), as this breaks Tableau’s
assumption that VM (or container instance) creation and teardown
are relatively infrequent events, which is not the case in such scenar-
ios. Regardless, we do not see such techniques completely replacing
traditional virtualization in the foreseeable future.
Other interference sources. VM scheduling is clearly not the
only source of unpredictability and “long tails” in data centers. For
instance, much prior work has dealt with network performance
isolation [3, 23, 27, 28, 54, 69]. Similarly, the memory subsystem is
a major source of unpredictability and performance degradation.
For example, Heracles [42] shows how to jointly consider all these
aspects (scheduling, memory isolation, and network isolation), al-
beit on the basis of Linux’s heuristic-driven CFS scheduler. The
contribution of Tableau is to remove the VM scheduler from the list
of key contributors to performance unpredictability and “long tails.”

9 CONCLUSION
In this paper, we presented the design of Tableau, an unorthodox
VM-scheduler based on static scheduling tables. Tableau combines
a low-overhead, table-driven dispatcher with the on-demand gener-
ation of scheduling tables satisfying the utilization and scheduling-
latency constraints of all VMs in the system. We presented a way
to quickly find such tables by repurposing relevant real-time sched-
uling theory, and presented the design and implementation of an
efficient implementation of Tableau in Xen 4.9. We have evaluated
our Tableau prototype and compared it against three other Xen
schedulers (Credit, Credit2, and RTDS) in the context of an I/O-
intensive workload, and have shown it to outperform the other
schedulers in terms of SLA-aware peak throughput,

In summary, Tableau is a novel, predictable, high-throughput VM
scheduler designed to ensure that VM scheduling is not a bottleneck
in the support for high-density VM workloads. While in this paper
we focused on processor scheduling alone, it is important to note
that CPU scheduling is merely one source of unpredictability in
the modern servers, and in the future, it would be interesting to
combine the approach presented here with other memory, disk, and
network isolation techniques [42], to enable even higher-density
packing of VMs without giving up performance guarantees.

ACKNOWLEDGEMENTS
We would like to thank the anonymous EuroSys reviewers, and
especially our shepherd Julia Lawall, for their insightful comments,
which greatly helped to improve the paper.

Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads EuroSys ’18, April 23–26, 2018, Porto, Portugal

REFERENCES
[1] 2018. SchedCAT: Schedulability test collection and toolkit. https://www.mpi-sws.

org/~bbb/projects/schedcat. (2018). Online; accessed 12 March 2018.
[2] 2018. wrk2: A constant throughput, correct latency recording variant of wrk.

https://github.com/giltene/wrk2. (2018). Online; accessed 12 March 2018.
[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for Ultra-
low Latency in the Data Center. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12).

[4] James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. 2005. An EDF-based
Scheduling Algorithm for Multiprocessor Soft Real-Time Systems. In Proceedings
of the 17th Euromicro Conference on Real-Time Systems (ECRTS ’05).

[5] Björn Andersson, Konstantinos Bletsas, and Sanjoy Baruah. 2008. Scheduling
Arbitrary-Deadline Sporadic Task Systems on Multiprocessors. In Proceedings of
the 2008 Real-Time Systems Symposium (RTSS ’08).

[6] B. Andersson and E. Tovar. 2006. Multiprocessor Scheduling with Few Pre-
emptions. In Embedded and Real-Time Computing Systems and Applications
(RTCSA’06).

[7] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. 1999. Resource Containers:
A New Facility for Resource Management in Server Systems. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI ’99).

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. 1993. Proportionate
Progress: A Notion of Fairness in Resource Allocation. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of Computing (STOC ’93).

[9] K. Bletsas and B. Andersson. 2009. Notional Processors: An Approach for Multi-
processor Scheduling. In Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’09).

[10] Konstantinos Bletsas and Björn Andersson. 2011. Preemption-light Multiproces-
sor Scheduling of Sporadic Tasks with High Utilisation Bound. Real-Time Syst.
47, 4 (July 2011), 319–355.

[11] Björn B Brandenburg and Mahircan Gül. 2016. Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations. In Proceedings of the 37th IEEE Real-Time Systems Symposium
(RTSS’16).

[12] A. Burns, R. I. Davis, P. Wang, and F. Zhang. 2012. Partitioned EDF Scheduling
for Multiprocessors Using a C=D Task Splitting Scheme. Real-Time Syst. 48, 1
(Jan. 2012), 3–33.

[13] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, omega, and kubernetes. Queue 14, 1 (2016), 10.

[14] Faruk Caglar, Shashank Shekhar, and Aniruddha Gokhale. 2016. iTune: Engineer-
ing the Performance of Xen Hypervisor via Autonomous and Dynamic Scheduler
Reconfiguration. IEEE Transactions on Services Computing (2016).

[15] Huacai Chen, Hai Jin, Kan Hu, and Minhao Yuan. 2010. Adaptive audio-aware
scheduling in Xen virtual environment. ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA) (2010).

[16] Kun Cheng, Yuebin Bai, Rui Wang, and Yao Ma. 2015. Optimizing Soft Real-Time
Scheduling Performance for Virtual Machines with SRT-Xen. 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (2015), 169–178.

[17] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. 2007. Comparison of
the three CPU schedulers in Xen. SIGMETRICS Performance Evaluation Review
35, 2 (2007), 42–51.

[18] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. 2007. Comparison of
the three CPU schedulers in Xen. SIGMETRICS Performance Evaluation Review
35, 2, 42–51.

[19] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In The
26th ACM Symposium on Operating Systems Principles (SOSP’17).

[20] Tommaso Cucinotta, Dhaval Giani, Dario Faggioli, and Fabio Checconi. 2010. Pro-
viding Performance Guarantees to Virtual Machines Using Real-Time Scheduling.
In European Conference on Parallel Processing (EuroPar’10).

[21] Mostafa Dehsangi, Esmail Asyabi, Mohsen Sharifi, and Seyed Vahid Azhari.
2015. cCluster: a core clustering mechanism for workload-aware virtual machine
scheduling. In Proceedings of the 3rd International Conference on Future Internet
of Things and Cloud (FiCloud’15).

[22] Friedrich Eisenbrand and Thomas Rothvoß. 2010. EDF-schedulability of Syn-
chronous Periodic Task Systems is coNP-hard. In Proceedings of the Twenty-first
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’10).

[23] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues Don’t Matter
When You Can JUMP Them!. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’15).

[24] Poul henning Kamp and Robert N. M. Watson. 2000. Jails: Confining the omnipo-
tent root. In In Proc. 2nd Intl. SANE Conference.

[25] Philip Holman and James H. Anderson. 2005. Adapting Pfair Scheduling for
Symmetric Multiprocessors. J. Embedded Comput. 1, 4 (Dec. 2005), 543–564.

[26] Taegyu Hwang, Kisu Kim, Jeonghwan Lee, Jiman Hong, and Dongwan Shin. 2016.
Virtual machine scheduling based on task characteristic. In Proceedings of the
31st Annual ACM Symposium on Applied Computing (SAC’16).

[27] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2013. Silo: Pre-
dictable Message Completion Time in the Cloud. Technical Report MSR-TR-2013-95.
http://research.microsoft.com/apps/pubs/default.aspx?id=201418

[28] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. 2013. EyeQ: Practical Network Perfor-
mance Isolation at the Edge. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI’13).

[29] W. Jiang, Y. Zhou, Y. Cui, W. Feng, Y. Chen, Y. Shi, and Q. Wu. 2009. CFS
Optimizations to KVM Threads on Multi-Core Environment. In Proceedings of the
15th International Conference on Parallel and Distributed Systems (ICPADS’09).

[30] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
scale Computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA ’15).

[31] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. 1991. Weighted round-robin
cell multiplexing in a general-purpose ATM switch chip. IEEE Journal on Selected
Areas in Communications 9, 8 (1991).

[32] Shinpei Kato and Nobuyuki Yamasaki. 2008. Portioned EDF-based Scheduling
on Multiprocessors. In Proceedings of the 8th ACM International Conference on
Embedded Software (EMSOFT ’08).

[33] S. Kato, N. Yamasaki, and Y. Ishikawa. 2009. Semi-partitioned Scheduling of
Sporadic Task Systems on Multiprocessors. In Proceedings of the 21st Euromicro
Conference on Real-Time Systems (ECRTS’09).

[34] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,
and Vlad Zolotarov. 2014. OSv: Optimizing the Operating System for Virtual
Machines. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14).

[35] Hermann Kopetz and Günther Bauer. 2003. The time-triggered architecture. Proc.
IEEE 91, 1 (2003), 112–126.

[36] Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh TX Phan, Chris Gill, Insup Lee, Chenyang
Lu, and Oleg Sokolsky. 2012. Realizing compositional scheduling through vir-
tualization. In Proceedings of the IEEE 18th Real-Time and Embedded Technology
and Applications Symposium (RTAS’12).

[37] Min Lee, AS Krishnakumar, Parameshwaran Krishnan, Navjot Singh, and Shalini
Yajnik. 2010. Xentune: Detecting Xen scheduling bottlenecks for media appli-
cations. In Proceedings of the 2010 IEEE Global Telecommunications Conference
(GLOBECOM’10).

[38] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik.
2010. Supporting Soft Real-time Tasks in the Xen Hypervisor. In Proceedings
of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE’10).

[39] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. 2010. DP-FAIR: A Simple
Model for Understanding Optimal Multiprocessor Scheduling. In Proceedings of
the 22nd Euromicro Conference on Real-Time Systems (ECRTS’10).

[40] Bin Lin and Peter A. Dinda. 2005. VSched: Mixing Batch And Interactive Vir-
tual Machines Using Periodic Real-time Scheduling. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (SC’05).

[41] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.

[42] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA ’15).

[43] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. 2016. The Linux scheduler: a decade of wasted cores.
In Proceedings of the Eleventh European Conference on Computer Systems (Eu-
roSys’16).

[44] Ruhui Ma, Fanfu Zhou, Erzhou Zhu, and Haibing Guan. 2013. Performance
Tuning Towards a KVM-based Embedded Real-Time Virtualization System. J.
Inf. Sci. Eng. 29 (2013), 1021–1035.

[45] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu: Just-in-time Summoning of
Unikernels. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (NSDI’15).

[46] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
2013. Unikernels: Library Operating Systems for the Cloud. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13).

[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles (SOSP’17).

https://www.mpi-sws.org/~bbb/projects/schedcat
https://www.mpi-sws.org/~bbb/projects/schedcat
https://github.com/giltene/wrk2
http://research.microsoft.com/apps/pubs/default.aspx?id=201418

EuroSys ’18, April 23–26, 2018, Porto, Portugal Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg

[48] Ernesto Massa, George Lima, Paul Regnier, Greg Levin, and Scott Brandt. 2014.
Optimal and adaptivemultiprocessor real-time scheduling: The quasi-partitioning
approach. In Proceedings of the 26th Euromicro Conference on Real-Time Systems
(ECRTS’14).

[49] Bill McCarty. 2004. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly
Media, Inc.

[50] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying andManaging Performance
Interference in Virtualized Environments. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (USENIX ATC’13).

[51] Luis Obispo, Ryan Hnarakis, and Lynne Slivovsky. 2014. In Perfect Xen, a Perfor-
mance Study of the Emerging.

[52] Chandandeep Singh Pabla. 2009. Completely fair scheduler. Linux Journal 2009,
184 (2009), 4.

[53] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad
Singhal, Arif Merchant, and Kenneth Salem. 2007. Adaptive Control of Virtualized
Resources in Utility Computing Environments. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 (EuroSys ’07).

[54] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A Centralized "Zero-queue" Datacenter Network. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM’14).

[55] Daniel Price and Andrew Tucker. 2004. Solaris Zones: Operating System Support
for Consolidating Commercial Workloads. In Proceedings of the 18th USENIX
Conference on System Administration (LISA’04).

[56] Paul J Prisaznuk. 2008. ARINC 653 role in integrated modular avionics (IMA).
In Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th. IEEE,
1–E.

[57] Jia Rao, KunWang, Xiaobo Zhou, and Cheng-Zhong Xu. 2013. Optimizing virtual
machine scheduling in NUMA multicore systems. In Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA’13).

[58] Jia Rao and Xiaobo Zhou. 2014. Towards fair and efficient SMP virtual machine
scheduling. In ACM SIGPLAN Notices, Vol. 49. ACM, 273–286.

[59] Paul Regnier, George Lima, Ernesto Massa, Greg Levin, and Scott Brandt. 2011.
RUN: Optimal multiprocessor real-time scheduling via reduction to uniprocessor.
In Proceedings of the 2011 IEEE 32nd Real-Time Systems Symposium (RTSS).

[60] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In Proceed-
ings of the SIGOPS European Conference on Computer Systems (EuroSys’13).

[61] Myungjoon Shon, Kisu Kim, Hansol Lee, Sung Y Shin, and Jiman Hong. 2017.
DACS: dynamic allocation Credit scheduler for virtual machines. In Proceedings
of the Symposium on Applied Computing (SAC’17).

[62] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. 2007. Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys’07).

[63] Anand Srinivasan and James H Anderson. 2002. Optimal rate-based scheduling
on multiprocessors. In Proceedings of the thiry-fourth annual ACM symposium on

Theory of computing. ACM, 189–198.
[64] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-based

Secure Virtualization Architecture. In Proceedings of the 5th European Conference
on Computer Systems (EuroSys’10).

[65] O. Sukwong, A. Sangpetch, and H. S. Kim. 2012. SageShift: Managing SLAs for
highly consolidated cloud. In INFOCOM, 2012 Proceedings IEEE. 208–216.

[66] Gil Tene. 2013. How not to measure latency. Low Latency Summit (2013), 68.
[67] Kenneth van Surksum. 2013. The CPU Scheduler in VMware vSphere 5.1. (2013).
[68] Amos Waterland. 2013. stress POSIX workload generator. http://people.seas.

harvard.edu/~apw/stress. (2013).
[69] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011. Bet-

ter Never Than Late: Meeting Deadlines in Datacenter Networks. In Proceedings
of the ACM SIGCOMM 2011 Conference (SIGCOMM’11).

[70] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. 2002. Linux Security Modules: General Security Support for the Linux
Kernel. In Proceedings of the 11th USENIX Security Symposium.

[71] Song Wu, Haibao Chen, Sheng Di, Bing Bing Zhou, Zhenjiang Xie, Hai Jin, and
Xuanhua Shi. 2015. Synchronization-Aware Scheduling for Virtual Clusters in
Cloud. IEEE Transactions on Parallel and Distributed Systems 26 (2015), 2890–2902.

[72] Song Wu, Huahua Sun, Like Zhou, Qingtian Gan, and Hai Jin. 2016. vProbe:
Scheduling Virtual Machines on NUMA Systems. In Proceedings of the 2016 IEEE
International Conference on Cluster Computing (CLUSTER’16).

[73] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo
Lange, and Cesar A. F. De Rose. 2013. Performance Evaluation of Container-Based
Virtualization for High Performance Computing Environments. In Proceedings
of the 2013 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP’13).

[74] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. 2011. RT-Xen: To-
wards real-time hypervisor scheduling in Xen. In Proceedings of the International
Conference on Embedded Software (EMSOFT’11).

[75] Sisu Xi, Meng Xu, Chenyang Lu, Linh T. X. Phan, Christopher Gill, Oleg Sokol-
sky, and Insup Lee. 2014. Real-time Multi-core Virtual Machine Scheduling in
Xen. In Proceedings of the 14th International Conference on Embedded Software
(EMSOFT’14).

[76] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ramana Rao Kom-
pella, and Dongyan Xu. 2012. vSlicer: Latency-aware Virtual Machine Scheduling
via Differentiated-frequency CPU Slicing. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing (HPDC’12).

[77] Xianghua Xu, Peipei Shan, Jian Wan, and Yucheng Jiang. 2008. Performance
Evaluation of the CPU Scheduler in Xen. In Proceedings of the International
Symposium on Information Science and Engineering (ISISE’08).

[78] Lingfang Zeng, YangWang,Wei Shi, and Dan Feng. 2013. An Improved Xen Credit
Scheduler for I/O Latency-Sensitive Applications on Multicores. In Proceedings of
the 2013 International Conference on Cloud Computing and Big Data (CLOUDCOM-
ASIA’13).

[79] Alin Zhong, Hai Jin, Song Wu, Xuanhua Shi, and Wei Gen. 2012. Optimizing
Xen hypervisor by using lock-aware scheduling. In Cloud and Green Computing
(CGC), 2012 Second International Conference on. IEEE, 31–38.

http://people.seas.harvard.edu/~apw/stress
http://people.seas.harvard.edu/~apw/stress

	Abstract
	1 Introduction
	2 The Problem
	2.1 Unpredictability Increases Tail Latencies
	2.2 Scheduling Overhead Limits Throughput

	3 The Tableau Approach
	4 A Minimal Dispatcher
	5 Finding a Good Schedule Quickly
	6 Implementation: Tableau in Xen
	7 Evaluation
	7.1 Table-Generation Overheads
	7.2 Scheduler Runtime Overheads
	7.3 Comparing Scheduling Delay
	7.4 Comparing nginx HTTPS Throughput
	7.5 Discussion and Limitations

	8 Related Work
	9 Conclusion
	References

