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Abstract—Machine learning (ML) is applied in many safety-
critical domains such as autonomous driving and medical di-
agnosis. Many ML applications in such domains require object
detection, which includes both classification and localization, to
provide additional context. To ensure high accuracy, state-of-
the-art object detection (OD) systems require large quantities
of correctly annotated images for training. However, creating
such datasets is non-trivial, may involve significant human effort,
and is hence inevitably prone to annotation faults. We evaluate
the effect of such faults on OD applications. We present ODFI,
which can inject five different types of common annotation faults
into any COCO-formatted dataset. We then use ODFI to inject
these faults into two road traffic and one medical X-ray imaging
datasets. Finally, using these faulty datasets, we systematically
evaluate and compare the efficacy of existing OD techniques
that are designed to be robust against such faults. To do so,
we introduce a new metric that evaluates the robustness of OD
models in the presence of faults. We find that (1) single-stage
detectors trained with faulty annotations perform better in scenes
with more objects, (2) redundant bounding boxes have the least
impact on robustness, and (3) ensembles have the highest overall
robustness among the robust OD techniques considered.

Index Terms—Error resilience, Machine learning, Training

I. INTRODUCTION

Machine learning (ML) is used in many safety-critical
domains such as autonomous vehicles (AVs) [1] and medical
diagnosis [2]. AVs rely on ML to make sound driving deci-
sions [3]. Medical practitioners may use ML to guide diagnosis
in X-ray images [4]. Incorrect predictions could cause an
AV to crash (endangering its occupants) or could lead to a
misdiagnosis (placing the patient’s health at risk).

Object Detection (OD), or image classification and local-
ization of multiple objects within a single image frame, is
an important ML application [5]. ML models in AVs, for
instance, need to identify all pedestrians and their positions
in the frame. An AV should brake if a pedestrian appears
directly on its oncoming path. However, if the same pedestrian
was positioned to the side of the road, the AV need not brake.
Similarly, in medical diagnosis, ML models need to identify
the disease type and locate the position of abnormal tissues in
an X-Ray image.

OD is based largely on supervised ML [5] and requires
a large collection of annotated images for training, e.g., the
widely used COCO dataset [6]. To ensure high accuracy, a
large fraction of annotations in the training dataset must be
correct, i.e., they must (1) classify the object classes correctly,
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Fig. 1: (a) Image #123289 in COCO [6] with all annotations.
(b, ¢) Annotation faults found in the image. (d-f) Annotation
faults interpolated in the image (SC denotes superclass).

(f) Missing

(2) define the bounding box sizes and positions correctly, and
(3) not miss any or have redundant bounding boxes.

Popular training datasets for object detection such as
COCO [6], unfortunately, have been found to contain numer-
ous annotation faults. For example, Fig. 1a shows an original
training image from COCO with all the annotations; Fig. 1b
identifies an annotation with a mislabelled class in this image
(a bus is incorrectly classified as a truck), whereas Fig. 1c iden-
tifies a redundant annotation (a street light is unnecessarily
annotated as a traffic light). As per understand.ai, an industry
expert in data annotation, annotations with incorrect bounding
boxes, mislabelled superclasses, and missing annotations are
also quite common [7]. While the original image from COCO
shown in Fig. la does not contain these three faults, we
interpolate these onto the image in Figs. 1d to 1f. The
bounding box in Fig. 1d has incorrect dimensions, the traffic
light in Fig. le is incorrectly annotated as a person (a different
superclass), and the bounding box is missing in Fig. 1f.

All five fault types (Fig. 1) can lead to unsafe and potentially
catastrophic scenarios (see Table I). However, object detection
models are trained over thousands of annotated images, so
predictions at runtime may actually not result in similar faults.
The occasional fault in a dataset may not affect the overall
accuracy but we sometimes do not know the extent to which
training data is faulty. We therefore ask the question: When
do faulty annotations in the training dataset start affecting the



prediction quality of an object detection model? This specific
question breaks down into three related questions:

(1 What is the effect of faults in training data on object
detection? (2) Are specific types of faults more impactful than
others? (3) What are effective techniques for improving the
robustness of object detection?

We systematically study the effect of annotation faults on
OD techniques via fault injection. We focus on the five types
of annotation faults identified above. We further study the
efficacy of robust OD techniques, which are designed to pro-
duce models that maintain high classification and localization
accuracy despite the presence of different types and amounts
of annotation faults in training datasets. An example robust
OD technique uses a secondary ML network to distill clean
training annotations from noisy ones and learns from them [8].

In our prior work, we studied the robustness of image clas-
sification models in the presence of training dataset faults [9],
but not for object annotation faults on OD techniques. Unlike
image classification, object detection also entails the prediction
of correctly sized bounding boxes, known as localization.
The process of localizing bounding box coordinates and sizes
makes it a regression problem, where the output space is
much larger than classification. Other studies on robust object
detection have focused mostly on evaluating and tolerating the
effects of salt and pepper noise, Gaussian noise, or adverse
weather events on object detection training images [10-14].
Comparatively, fewer studies have focused on evaluating or
tolerating the common annotation faults we described. Existing
studies [8, 15, 16] focus specifically on either mislabelled class
or incorrect bounding box errors, while we consider multiple
fault types. To the best of our knowledge, we are the first to
systematically study the robustness of objection detection mod-
els, and the effectiveness of robust object detection techniques
in the presence of commonly observed annotation faults.

We take the perspective of a practitioner rather than a ML
researcher in this work. Practitioners desire out-of-the-box (i.e.
general) approaches in ML, with minimal tuning, such that
their own datasets and models can be easily evaluated with
interpretable metrics [17]. Therefore, we systematically iden-
tify representative robust OD techniques from the literature
that can be easily applied with minimal effort across datasets.
We also propose a new metric that is easily interpretable in
the context of different safety-critical applications, and allows
consistent comparison among the different OD techniques.

We make the following contributions:

o We propose a fault injection tool called Object Detection
Fault Injector (ODFI'), which can systematically inject
five different types of common annotation faults into
any COCO-formatted [18] dataset, a popular standard for
object detection datasets.

e« We introduce a new metric, Object Precision Delta
(OPD), that evaluates the robustness of ML models in
safety-critical object detection by placing higher signifi-
cance on mispredicted annotations belonging to incorrect

1ODFI is available at https:/github.com/DependableSystemsLab/ODFI

superclasses. OPD provides a consistent metric across dif-
ferent safety-critical datasets, which have vastly different
ways to measure prediction capability.

o We systematically shortlist papers on robust OD tech-
niques, by carrying out an extensive related work survey,
categorizing the techniques, and choosing representative
techniques in each category for our evaluation.

o We use ODFI and OPD to evaluate the effect of annota-
tion faults on OD techniques, as well as the effectiveness
of select robust OD techniques, against different OD
models, across three OD datasets covering real-world
road traffic, simulated road traffic, and medical X-Rays.

Our experimental results show that (1) two-stage OD models
are less robust than single-stage OD models in images with
more objects, (2) redundant annotation faults have the least
impact on OD models, and (3) ensembles comprised of both
single-stage and two-stage detectors provide high robustness
across fault types and outperform other techniques, averaging
a 34% improvement in OPD over the individual models.

II. BACKGROUND AND MOTIVATION

To understand the effectiveness of object detection, we
need to define a suitable metric that measures the quality
of inference. We start by reviewing Mean Average Precision
(mAP), a metric that is widely used to measure the prediction
accuracy of an object detection model (Section II-A). We then
discuss the limitations mAP for evaluating the robustness of
OD models. Finally, we present an example to motivate the
need for looking beyond metrics like mAP (Section II-C).

A. Background: Mean Average Precision (mAP)

There are several ways to compute mAP and many online
tutorials explain these steps in detail [19-21]. Our approach is
based on the mAP definition proposed in the PASCAL Visual
Object Classes (VOC) challenge [19, 22].

In object detection, each prediction (each object detected
in an image) consists of a bounding box, a class label, and a
confidence level. The first step is to determine if a prediction
is a true positive (TP) or a false positive (FP). A prediction is
a TP if its class label matches the ground truth label and its
bounding box overlaps reasonably well with the ground truth
bounding box. The latter condition is evaluated by checking
that the Intersection-of-Union (IoU) between the two bounding
boxes, i.e., the ratio of their overlapping region and their union,
exceeds a minimum threshold, which is typically 0.5 [23].
Any prediction that does not satisfy the TP criteria is a FP.
In addition, if a labeled object in the ground truth data is not
predicted at all, we count it as a false negative (FN).

The second step is to determine the precision and recall
values for each class. Each prediction is associated with a
confidence score. Given a class, all predictions identifying
objects belonging to this class are first ranked in decreasing
order of their confidence scores. The precision and recall
values are then computed at each rank, starting from the
highest rank. Precision is the fraction of correct predictions
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TABLE I: List of annotation faults explored in this paper and their potential implications, based on examples in Fig. 1

Fault Type

Unsafe or Potentially Catastrophic Scenarios

Mislabelled Class

Fig. 1b: Misclassifying a bus as a truck may cause an AV to ignore bus priority lane merging rules

Redundant Annotation Fig. Ic: The redundantly annotated red traffic light may mislead an AV to brake, overriding the (real) green light

Incorrect Bounding Box
Mislabelled Superclass (SC)

Fig. 1d: Due to the very wide bounding box, an ML model may erroneously learn to avoid passing cars even when safe
Fig. le: Misclassifying a random small object as a person may cause an AV to dangerously pause in an intersection

Missing Annotation Fig. 1f: The AV may entirely disregard the car on the road (which was not annotated) causing a head-on collision

among all predictions evaluated, and recall is the fraction of
ground truth predictions that have been correctly predicted.

Formally, let OD. = {od. 1, od.z2, ...} denote the ordered
set of predictions for class c. Let TP+ (od.;) = 1 (or 0) if the
it" prediction is a TP (or a FP, respectively). Let N, denote
the total number of ground truth predictions. The precision
and recall at rank 7 are defined as follows:

>iz1 TP2(od.i) and R,, = i TP?(Odc,i).
r i N,

In the final step, first the Average Precision (AP) for each
class is derived by computing the area under the precision-
recall (P-R) curve, e.g., the P, , versus R., curve for class c.
A step function upper-bounding the P-R curve may be used, so
that AP can be easily computed as the sum of all rectangular
blocks under the curve. The mAP is then computed by
averaging the AP across all classes in the dataset. It ranges
from O to 1, where higher values imply better accuracy.

Pc,r -

B. Limitations of mAP

We identify three main issues with mAP.

First, each incorrect prediction (i.e., false positive) in an
image is given the same weight regardless of its class, which is
not suitable for safety-critical applications. For example, mis-
classifying a truck as a bus has negative safety consequences
for AVs (since buses have more frequent stops than trucks);
however, misclassifying a truck as a green traffic light is much
worse (e.g., the AV may mistakenly drive into the truck!).
These differences are not captured by the mAP metric.

Second, there are multiple definitions of mAP being used
that are inconsistent, which makes comparisons across datasets
difficult [24]. For example, unlike the PASCAL VOC definition
that we discussed earlier, the mAP for COCO [6] is averaged
across both label classes and different IoU thresholds.

Third, in the context of fault injection, mAP is oblivious
of the difference between a model that is trained on data
injected with faults (a faulty model) and a model that is
trained on pristine data (golden model). Hence, when using
mAP to evaluate a model’s performance with and without fault
injection, the cases where both the golden model and the faulty
model incorrectly predict objects are unnecessarily included —
a similar problem also arises in the accuracy metric used for
classification as our prior work found [25]. Scenarios that are
incorrectly predicted by the golden model should instead be
filtered out and should not be used when evaluating robustness.

C. Motivating Example

We demonstrate the limitations of mAP when trying to
understand the effect of annotation faults against OD models.
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Fig. 2: Prediction on a test image from COCO-Traffic.

We use the COCO-Traffic [26] dataset, a subset of MS-
COCO [6] containing traffic-related images.

First, we train YOLOv3 with a DarkNet-53 backbone for
object detection using a pristine version of the COCO-Traffic
dataset (i.e., without introducing any annotation faults). The
resulting model is called the golden model. The mAP of
the golden model is 0.43, which is similar to the state-
of-the-art mAP observed for YOLOv3 on MS-COCO [27].
Next, we train the same network on a different version of
COCO-Traffic, this time after injecting annotation faults with
mislabelled classes (similar to the real-world examples shown
in Fig. 1b). Specifically, we randomly select 10% of object
annotations across the entire training dataset and perturb their
class categories. As a result, the mAP of the faulry model falls
slightly from 0.43 to 0.39.

In Fig. 2a, we show a test image from COCO-Traffic
overlaid with the ground truth bounding boxes and their
class labels (without fault injection). In Fig. 2b, we show
the same image, but overlaid with the predictions made by
the faulty model above (i.e., which was trained on COCO-
Traffic injected with 10% mislabelled class). As a result,
some predictions in Fig. 2b (marked in red) are incorrect
and do not match the ground truth. Despite the faulty model
making many mispredictions throughout the test dataset (e.g.
a person is misclassified as a train!), mAP only reports a small



TABLE II: AP statistics for Fig. 2b

Class Predicted IoU Conf Result P R AP
Bus Bus 0.87  0.83 TP 71 11 1
Car 0.73 0.7 TP 71 12
Car Car 0 0.63 FP 172 172 0.83
Car 0.6 0.47 TP 2/3 272
Stop sign  Stop sign 0.5 0.36 TP /1 11 1
Person - - - FN 0/0 0/1 0
Train Train 0.21 0.51 FP 0/1  0/0 0
TABLE III: AP statistics for Fig. 2d
Class Predicted IoU Conf Result P R AP
Bus - - - FN 0/1  0/0 0
Car Car no changes 0.83
Stop sign  Stop sign no changes 1
Person Person 0.9 0.51 TP 171 171 1
Train Train 0.87 0.83 FP 0/1  0/0 0

decrease from the golden model, showing its unsuitability
in comparing robustness. To understand the shortcomings of
mAP, we explain how mAP is computed on a single image,
and how it changes due to mispredictions by a faulty model.

We list all the predictions in Fig. 2b in Table II. The
predictions are grouped by class, and in the case of multiple
predictions per class, ordered by their confidence values. We
mark each prediction as a true positive (TP) or a false positive
(FP) depending on their IoU values and class labels. If an
object in the ground truth is not detected (e.g., class “Person”),
we mark it as a false negative (FN).

To compute class-wise APs, we follow the steps in Sec-
tion II-A. We compute the precision (P) and recall (R) of each
prediction in order of their rank, and then plot the P-R curve
(see Fig. 2c). Using rectangular interpolation [19, 22] shown as
shaded, we compute the area under the P-R curve to yield the
AP. The mAP, averaged over the five AP values, one for each
class, is 0.57. While mAP is flexible over imperfectly predicted
bounding boxes (reducing FNs), mAP unfortunately treats all
mispredictions equally - we show why this is a problem below.

Suppose the person in Fig. 2a was predicted correctly, while
the bus was instead misclassified as a train, as shown in
Fig. 2d. In Table III, we show how mAP would be recalculated.
mAP would be the same (0.57), as in Fig. 2b. However,
because busses and trains are both large vehicles, we expect
that the relative impact in Fig. 2d would be less than that in
the case where a person is mispredicted as a train (Fig. 2b).

III. METHODOLOGY FOR ASSESSING OBJECT DETECTION

We define a new metric for robustness, which we refer
to as Object Precision Delta (OPD) (in Section III-A). We
survey and present three representative robust object detection
techniques for evaluation (Sections III-B and III-C). Finally,
we explain our fault injection tool ODFI (Section III-D).

A. A Superclass-Aware OD Robustness Metric

Like mAP, OPD also relies on the area under the precision-
recall curve that is calculated over the entire test dataset.
However, it incorporates other properties, as explained below.

Recall the ground truth, golden model, and faulty model def-
initions from Section II-C. The ground truth is the collection of
labelled bounding boxes in the test dataset, the golden model
is trained on the training dataset before fault injection, and
the faulty model is trained on the training dataset after fault
injection. Unlike mAP, OPD has the following properties.

1) When OPD is computed on faulty models, it excludes
any object that is incorrectly predicted by the golden
model. This eliminates the double-counting problem
with mAP identified in Section II-B.

2) OPD compares the superclass of the object class pre-
dicted by the faulty model with that predicted by the
golden model. It then uses weighted FPs so that a FP
that mispredicts the superclass is penalized more than
a FP that mispredicts only the class. In contrast, mAP
ignores the superclass and treats all FPs equally.

We now formally define OPD. Consider a labelled dataset
D ={X,Y}, where X and ) denote an ordered set of images
and their labels. Let 2; € X denote the i input image and
y; € ) denote the set of all annotations associated with it.
Let M, and My denote two trained instances of the same
network architecture. M, is the golden model and is trained
on a pristine copy of the dataset, whereas M} is the faulty
model and is trained on a faulty version of the dataset. M (x;)
and M (x;) denote the predictions of the two models for input
image z;. Consider another dataset D’ C D consisting of test
inputs and label pairs that are correctly predicted by M. That
is, D' = {&X’,Y'} such that X" = {x; € X | My(x;) = y; }
and V' = {y; € Y | z; € X’}. The equivalence relation “="
denotes that the prediction is correct, i.e., the predicted class
matches the ground truth and the IoU exceeds 0.5.

Let C denote the set of all classes and Cgyyper denote the set
of all superclasses for labels in D. We define two functions:
I': Y= Cand ¥ : Y — Csyper. Given an annotation, I'
returns its class, while ¥ returns its superclass. OPD uses
weighted FPs when computing the precision for any class.
where the weights depend on whether the annotation matches
the superclass. Specifically, we choose two parameters o and
[ to differentiate the two scenarios, and define the precision
P; for the it prediction, ordered by confidence score, as

TP,
Pi - )
TP; + w(yg, yp)FP;

a T(yg) # T(yp) AN ¥(yy) = ¥ (yp)
B T(yg) # Tlyp) ANV(yg) # ¥(yp) (2
1 otherwise

where @))

w(Yg, Yp) =

Yg> Yp are the ground truth and predicted annotations respec-
tively. We choose @ < 1 < /3 so that misclassified superclasses
are penalized more than misclassified classes. The weight is
equal to 1 if the object class is not assigned to any superclass.

We demonstrate how we calculate OPD over a single image,
using the example shown in Table II. For further simplification,
we calculate OPD for the “car” class only.

The original mAP metric is unweighted, meaning o = 8 =
1 in Eq. (2). The corresponding P-R curve is the green curve
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Fig. 3: P-R curves for “car”. Green line is unweighted. Red
dashed line shows misclassified to another superclass. Blue
dotted line shows misclassified but within same superclass.

shown in Fig. 3. Before calculating the OPD, we experimented
with many different combinations of o and 5. If o << §,
OPD would only treat incorrect superclass as FPs, ignoring
other cases of misprediction, while & =  would not impose
any weight. We find that o = 0.5 and § = 2 for OPD strikes
this balance - hence, we use these values throughout the paper.
Suppose the second “car” annotation is misclassified as an
incorrect superclass. This would result in w(y,y,yr) = 2,
which would lower the precision as seen by the red scatter
point. We can observe that the area under the P-R curves would
decrease under the red dashed curve compared to the green
curve, resulting in a smaller OPD. However, if the second car
annotation is mispredicted as a class belonging to the same
superclass, a = 0.5 would be applied to the FP weight, which
would raise the precision (the blue dotted curve in Fig. 3).
The OPD of the golden model (YOLOv3-DarkNet) over
the entire COCO-Traffic test dataset, is 0.49. After injecting
10% mislabelled class faults, the OPD drops to 0.34. This
drop is greater than the drop in mAP between 0.43 to 0.39.
This indicates that the YOLOv3-DarkNet model is susceptible
to mispredicted superclasses, when trained with mislabelled
classes - this is an observation that the mAP metric could
not capture. Therefore, we define robustness as the difference
between OPD values of the golden and faulty models.

B. Shortlisting of Robust OD techniques

To shortlist representative robust OD techniques for com-
parison, we followed a three step process. First, we used the
following keywords to search for papers in IEEE Xplore,
arXiv, and Github: “robust object detection”, “noisy object
detection”, and “robust object detection annotation errors”.
This gave us 30 papers. Then, we analyzed each of the papers
to check if the proposed methods are compatible with OD
rather than other forms of ML (e.g., image classification).
Second, we categorized the papers into three main categories:
ensembles, active learning, and robust loss. After categoriza-
tion, we identified nine major papers (three in each category).

Finally, we chose a representative technique from each
category, as one that satisfies all the following five criteria.
(1) has available and easily modifiable code, (2) has been
evaluated on more than one OD neural network architecture
type, (3) has been evaluated on more than one OD dataset, (4)
can read datasets in COCO Format, (5) does not significantly
reduce the mAP of a fault-free model.

Table IV shows the top three papers for each category, along
with how they satisfy our selection criteria. Techniques that
met all selection criteria are marked using an asterisk (*); these
are representative of the respective OD approach category.

C. Selected Robust OD Techniques

We explain the three techniques that are representative of
each category of robust OD technique shown in Table IV.

Ensembles: Ensembles are widely used in image classifica-
tion [25, 34] and also in OD [28, 30, 35]. Ensembles involve
multiple models, trained independently on the same faulty
training data, and voting on predictions. However, voting is
not straightforward for OD since each image has multiple
annotations, where each is associated with a bounding box.
Because bounding box prediction is a regression problem, their
exact coordinates can vary, even among golden models. Hence,
a proper voting scheme must be determined for OD ensembles.

Voting schemes for ensembles [28] include: affirmative,
consensus, and unanimous. Affirmative ensembles predict a
bounding box if at least one model predicts the box. Alter-
natively, unanimous ensembles predict a bounding box only
if every model predicts the same box. Consensus ensembles,
present a middle ground, where a bounding box is predicted if
it receives a majority vote across models. Consensus ensem-
bles provide the best trade-off between false positives and false
negatives [28], and hence, we implement consensus ensembles.

One advantage of ensembles over other techniques is that
they can combine different OD architectures. For instance, an
ensemble can combine both one-stage and two-stage detectors,
and hence achieve the efficiency of single-stage detectors as
well as the higher accuracy of two-stage detectors [36].

Active Learning (AL): Active learning is where the ML
algorithm actively queries the training data for relevant in-
stances, and trains on these selected instances to more ef-
fectively learn. We use the tool, OA-MIL [8], which stands
for Object-Aware Multiple Instance Learning, to represent
active learning. OA-MIL generates higher-quality annotations
by optimizing a heuristic comparing select annotations against
noisy annotations. The authors of OA-MIL evaluate it against
box noise, which randomly applies incorrect bounding box
transformations to every annotation in the training dataset. In
contrast, we apply five different types of annotation faults, and
to a random subset of the annotations in the training dataset.

Robust Loss (RL): Loss functions measure the distance
between the ground truth and the predictions. In OD, there are
multiple loss functions as OD consists of both classification
and localization of the bounding boxes. For classification,
Cross Entropy (CE) [37] is typically used as a loss function.
For localization, IoU Loss [23] is commonly used.

We use Focal Loss (FL) [32] (Eq. (4)), which adds a
modulating term to CE (Eq. (3)), so that learning focuses
on misclassified examples. While FL is designed for class-
imbalanced datasets, it may also be used for noisy annotations
in OD [33]. p. represents the prediction probability for each
class, while o and v are tunable hyperparameters. We use the
default hyperparameters for FL [32] where o = 0.5 and v = 2.



TABLE IV: Top three techniques for each robust object detection category. Representative techniques marked with an asterisk.

OD Approach Technique Code?  Arch-Agnostic?  Dataset-Agnostic? COCO-Format?  Baseline mAP?
Object Detection Ensemble* [28] v v v v v
Ensemble NoteRCNN [29] X X v v X
Fused Ensemble [30] X v X X v
OA-MIL* [8] v v v v v
Active Learning ~ Co-Teaching [15] X X 4 X X
Context-aware Noisy Label Detection [31] X X X v v
Focal Loss* [32] v v v v v
Robust Loss Noise Resistant Focal Loss [33] X X v X v
Gradient Reconcilement [16] v v v X v

TABLE V: Annotation fault implementation in ODFI

TABLE VI: Object detection datasets used in our experiments

Fault Type Implementation

Incorrect Box Randomly reposition box and reduce size by 30%

Mislabelled Replace class with another one

Mislabelled SC  Replace class with one belonging to another superclass
Missing Remove annotation

Redundant Duplicate annotation and position it randomly

Name Dataset Size Task (# Classes)

Training Test
COCO-Traffic [26] 11,544 2,887  Traffic-related images (15)
VinChest [41] 3,296 1,098 Medical Chest X-Rays (14)
CARLA [39] 1,600 264  Scenes from AV sim (10)

CE(pc) = —log(pc)
FL(p.) = —a(1 — p.)" log(p)
D. ODFI: Annotation Fault Injection

3)
“4)

We explain how ODFI injects the five annotation fault types,
described in Section I. ODFI has three steps. First, ODFI
reads a training dataset, styled in the COCO-Format [18]
into memory, using the open source COCO Dataset API [18].
Then, ODFI injects faults over a percentage of total object
annotations in the training dataset. Faults of each type are
injected according to their respective descriptions in Table V.
For mislabelled SC, ODFI relies on superclass information
provided in the original training datasets. For fault types
such as incorrect box and redundant, ODFI ensures that
all randomly positioned boxes are located within the image
bounds. Finally, the modified dataset in memory is saved
to a new COCO-Format file. While ODFI only works with
datasets in COCO-Format, there are many tools [38] to convert
OD datasets in other formats to the COCO-Format. The fault
injection amount and fault type is easily configurable in ODFI.

IV. EVALUATION

We ask the following three research questions (RQs):

o What is the robustness of object detection (OD) models
without any protection technique? (RQ1)

o Which fault types have the greatest impact on OD robust-
ness? (RQ2)

o Which OD protection techniques offer the highest robust-
ness over the unprotected models? (RQ3)

A. Experimental Setup

Datasets: Table VI shows the datasets used, represent-
ing applications in AVs and medical diagnosis, which are
safety-critical. We use COCO-Traffic [26] (Section II-C). The

CARLA [39] dataset compiles a list of urban scenes from the
CARLA AV simulator [40]. While COCO-Traffic offers real-
world images of objects in traffic scenes, CARLA provides
more interactive traffic scenarios between objects, which are
difficult to capture in the real-world. VinChest [41] consist
of Chest X-rays, which contain a collection of localized tho-
racic abnormalities. We rely solely on superclass information,
provided by the datasets. Because VinChest does not have
superclasses, we omit it from mislabelled superclass faults.

Models We use three OD models, as listed in Table VII,
which cover both single-stage and two-stage detectors. Of the
three OD models we used, Faster R-CNN [42] is a two-stage
detector, while the YOLO-based models [27] are single-stage.

An OD model consists of a head, backbone, and sometimes
a neck [43]. The backbone extracts features, while the head
completes prediction by deciding which bounding boxes are
relevant. The neck is a transition between the backbone and
head (a Feature Pyramid Network), to increase accuracy.

We use multiple backbone models as shown in Table VII.
MobileNet has about 27 convolution layers, while ResNet50
and DarkNet53 both have more than 50 convolution layers
each. All backbone models are pre-trained with ImageNet
weights as the standard practice in OD [44]. All unprotected
OD models utilize cross entropy loss.

A two-stage detector separately conducts feature extraction,
and then identifies areas of interest in two steps, while a single-
stage detector combines both steps into one. For example,
two-stage detectors, like Faster R-CNN, use a separate Region
Proposal Network (RPN) as their heads. Two-stage detectors
are typically more accurate (i.e. higher mAP) than single-stage
detectors, but are often slower. As a result, two-stage detectors
are typically preferred in medical diagnosis applications where
accuracy is more important than speed, while single-stage
detectors are preferred in real-time systems like AVs, where
speed is more important. We choose YOLOv3 [27] with



TABLE VII: Object detection models used in our experiments

Name Head Neck Backbone  # Stages
YOLOV3 MobileNet [27] YOLOv3 MobileNet  Single
YOLOV3 DarkNet [27] YOLOvV3 DarkNet53  Single
Faster R-CNN [42] RPN FPN ResNet50 Two

varying backbones to represent OD systems deployed in AV
object, lane, and pothole detection systems [45, 46]. Despite
the release of newer single-stage models, YOLOV3 remains an
appealing choice for AVs due to its fast inference speed [47].
We apply Faster R-CNN to represent OD systems deployed
for cancer and lesion detection on radiographs [48, 49].
Techniques For the robust OD techniques, we only apply
Active Learning (AL) and Robust Loss (RL) to Faster R-
CNN, the best performing OD model by OPD. The ensemble
consists of all three individual models (Table VII) combined,
under consensus voting (Section III-C). We use the default
hyperparameters provided by each shortlisted technique.
Setup All the models used in our experiments are written
in either TensorFlow 2.10.1 or PyTorch 1.10, trained with
100 epochs and early-stopping enabled. They are run 20
times each to obtain results within a 95% confidence interval,
totalling a month of computation time. ODFI is built on the
official COCO API [6], and is also written in TensorFlow.
For experiments, we used a 64-bit, AMD Ryzen Threadripper
3960X 24-Core Processor and a NVIDIA RTX 3070 GPU.

B. Baseline mAP without Faults

We first measure the baseline mAP of each model and
each robust OD technique without any faults injected in the
training dataset. These values are shown in Table VIII, which
are consistent with the state-of-the-art mAP reported for each
dataset: MS-COCO [27, 42], CARLA [50], and VinChest [51].

We observe that Faster R-CNN has a higher mAP than
the two YOLO-based OD models on CARLA and VinChest.
However, Faster R-CNN has a lower mAP for COCO-Traffic.
We find that YOLOv3-based models perform better in images
containing more objects, such as COCO-Traffic. As a two-
stage detector, Faster R-CNN utilizes a RPN, which yields
more weight to lower confidence bounding boxes. Since
YOLO is single-stage, it scans over the image only once,
mitigating the impact of learning low-confidence objects.

Among the OD techniques and across datasets, we observe
that ensembles have the highest overall mAP. However, they
are outperformed by AL on COCO-Traffic. AL can potentially
improve learning in general, even in datasets without noise,
by boosting the class discriminative ability of the OD model
through better learning examples [8]. We also observe that RL
has the lowest overall baseline mAP across the datasets. Focal
Loss, used in RL, has lower classification precision, in datasets
containing less labelling noise or more balanced classes [16].

C. RQI: Robustness without Protection

We explore the robustness of OD models without any
protection techniques applied. First, we inject one fault of each

TABLE VIII: mAP of OD model accuracies trained without
injected faults. The highest mAP for each dataset is bolded.

Dataset
Model/Technique COCO-Traffic CARLA  VinChest
YOLOvV3 MobileNet 43.5 75.16 19.39
YOLOV3 DarkNet 43.26 64.03 19.63
Faster R-CNN 34.56 74.09 23.19
Ensemble (Ens) 42.45 75.42 23.34
Active Learning (AL) 44.25 74.48 21.72
Robust Loss (RL) 30.61 65.79 21.76

fault type into 0%, 10% and 30% of the training images, and
measure the mAP and OPD of each configuration. We repeat
this experiment multiple times to get a 95% confidence inter-
val. Fig. 4 shows the average mAP of YOLOv3-MobileNet for
each fault type on the COCO-Traffic dataset. We observe no
significant difference in mAP. We make similar observations
for OPD, and on other datasets. Thus, by injecting one fault
per image, the number of faulty annotations are too small
to have an impact. For example in COCO-Traffic, there are
11,544 training images, containing 83,609 annotations since
each image can have multiple annotations. If 10% of images
are injected with one fault each, the effective faulty object
rate is only 1154/83609 = 1.4%. Moreover, training images
usually have multiple annotation faults [52, 53]. For example,
an analysis of the full COCO Dataset [6] found that 37% of
all object annotations were faulty [54]. Therefore, we inject
faults over the percentage of total object annotations in each
dataset, rather than just a single fault per image.

Golden
0.8 10% Images with Single Fault
mm 30% Images with Single Fault

& S <
Fault Type
Fig. 4: mAP when a single fault of each fault type is injected
in each image of the COCO-Traffic dataset. The error bars
indicate the 95% confidence intervals. Higher values are better.

We inject each of the five fault types into 10% and 30%
respectively of the total objects in each test dataset and
measure the OPD for each configuration. We observe that the
OPD is the highest for Faster R-CNN, across all configura-
tions on CARLA and VinChest (Figs. 5f to 5n) except for
COCO-Traffic (Figs. 5a to 5e), where YOLOv3 MobileNet
outperforms it. This is because two-stage detectors perform
worse on images with more objects (Section IV-B). We find
that single-stage detectors are more robust in scenes containing
higher number of objects (i.e., COCO-Traffic, VinChest) than
multi-stage detectors. Multi-stage detector outperform single-
stage detectors in CARLA. The average number of objects
per image in the test datasets for COCO-Traffic, VinChest,
and CARLA are 7.2, 5.4 and 1.4 respectively.
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Fig. 5: OPD of three different models, along with different protection techniques for each dataset and fault type. The error
bars in the results indicate the 95% confidence intervals. Higher values are better.

For each experimental configuration, we also measure the
mAP of each model, and compare it to our earlier OPD results.
We hypothesize that models, trained with faulty data, with high
mAP should also have high OPD. When comparing the mAP
across configurations in (Figs. 6f to 6i and 6k to 6n), we make
a similar observation, where Faster R-CNN has a higher mAP
compared to other models except on COCO-Traffic.

Surprisingly, the difference in OPD between YOLOv3 Mo-
bileNet and YOLOv3 DarkNet is much greater than their
difference in mAP, with the former having higher OPD. This
rejects our earlier hypothesis that models with high mAP also
have a high OPD. This indicates YOLOv3 MobileNet is more
robust than YOLOv3 DarkNet, especially with superclasses.
The opposite, where YOLOv3 DarkNet is more robust than
YOLOvV3 MobileNet, is observed on VinChest. Because both
models use YOLOvV3 as their heads, the backbone network
appears to affect robustness. For example, DarkNet has more
layers than MobileNet, and is more robust on VinChest where
X-ray images were higher resolution than traffic images.

Observation 1 Single-stage detectors are more robust than
multi-stage detectors, in scenes containing more objects.
D. RQ2: Annotation Fault Types

Next, we analyze the results according to fault types.
Generally, we observe that as the fault amount increases, OPD

decreases, as expected. This trend holds across all fault types.

We also observe that OD models have a lower OPD when
incorrect box faults are injected to the training data, but have a
similar mAP. This is seen in the mAP values of COCO-Traffic
and CARLA under incorrect box, Figs. 6a and 6f in contrast
to the OPD values in Figs. 5a and 5f. For instance, the golden
mAP of COCO-Traffic for YOLOv3 MobileNet is 0.44, while
the mAP for a model with 10% incorrect box is 0.43, which
is within the margin of error. However, the golden OPD for
COCO-Traffic for YOLOv3 MobileNet is 0.59, while the OPD
for the model with 10% incorrect box faults is 0.51. Similar
trends are seen for other OD models under this configuration.

This observation indicates that incorrect box faults cause
more predictions belonging to an incorrect superclass (i.e.
superclass misprediction). We had expected that incorrect box
would affect all the object classes equally, as we perturbed
the bounding box sizes. However, it appears that smaller
objects such as “person” or “stop signs” are more likely to be
affected by superclass mispredictions due to incorrect boxes
in the training data. While smaller objects are generally more
susceptible to mispredictions than larger objects due to their
reduced feature space, they are also more prone to superclass
mispredictions. Objects of the same superclass usually have
a similar bounding box size. For instance, traffic lights, a
superclass in COCO-Traffic, have a similar bounding box size,
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Fig. 6: mAP of three different models, along with different protection techniques for each dataset and fault type. The error
bars in the results indicate the 95% confidence intervals. Higher values are better.

no matter the type of traffic light. However, when objects
are incorrectly sized in the training dataset, the model may
misclassify an object into an incorrect superclass (i.e. a traffic
light to a vehicle) due to incorrect bounding box coordinates.
Compared to other fault types, redundant bounding boxes
had the least impact on both mAP and OPD. We can see
the effect on mAP (Figs. 6d, 61 and 6n) and OPD (Figs. 5d,
51 and 5n) respectively across datasets. While redundant
bounding boxes slightly degraded the localization ability of
OD models, it had little impact on their classification ability.
Many objects’ annotations were still predicted within the IoU
threshold, and belonged to the same class as their golden and
ground truth categories. As a result, true positive predictions
remained high, leading to relatively high mAP and OPD for
redundant bounding boxes, compared to other fault types.

Observation 2 OPD captures the effect of mispredicted su-
perclasses in faulty models, unlike mAP.

Observation 3 All fault types have a significant impact on
robustness except for redundant bounding boxes.
E. RQ3: Robust OD Techniques

Finally, we apply the three robust OD techniques to each
configuration and compare their OPD values. We observe that
ensembles are the most robust across configurations, followed

by AL and RL. Ensembles have equal or greater OPD than
AL and RL in most configurations. However, ensembles have
lower OPD than an individual model (Faster R-CNN) in
CARLA, seen in Figs. 5f to 5j. Both the single-stage detectors
in the ensemble, YOLOv3 MobileNet and YOLOv3 DarkNet,
have a significantly lower OPD than Faster R-CNN. Overall,
ensembles are more robust as they are the only technique to
combine both single and two-stage detectors.

We observe that RL is a more effective technique when
deployed at higher fault amounts. This is because Focal
Loss (FL) deployed in RL, appears to underperform at low
fault amounts. In comparison, ensembles and AL both have
high golden OPD, across all datasets. Further, while RL is
especially effective for mislabelled superclass, it is also robust
to missing annotations, as shown in Figs. 5c, 5h and 5Sm. FL
assigns a lower weight to well-classified training examples,
and a higher weight to ambiguous ones [32]. With missing
annotations, RL is able to better avoid mispredictions by
reducing FPs, though this is at the cost of also reducing TPs.

We also observe that AL is robust in general to the misla-
belled class, mislabelled superclass and incorrect box faults,
with a relatively high OPD. However, AL is not effective
against redundant annotations and missing annotations. This
is because AL effectively selects its own subset of training
data based on its own feature selection. While this helps for



certain fault types, AL struggles against redundant and missing
annotations as there are fewer good examples to learn from.

Observation 4 Ensembles have the highest overall robustness
compared to other techniques. Both AL and RL are robust
against some fault types, but RL has a lower golden OPD.

V. DISCUSSION

Impact of OD Architectures While we find that ensembles
are the most robust compared to individual models and other
techniques, they are also the most resource intensive, both in
terms of memory and runtime, as they require training multiple
OD models. During inference, there is also additional overhead
to run multiple models in parallel and vote on predictions. In
safety-critical applications like AVs, where runtime efficiency
is important (especially during inference), practitioners could
consider selectively ensembling parts of the OD network.
Instead of an ensemble of OD models, one can ensemble
only the backbone networks and use a single head. Ensembles
of backbone networks are equivalent to ensembles of image
classification models, which can benefit from significant opti-
mizations [55]. Alternatively, a single backbone network can
be utilized, and the result can be fed into multiple heads (i.e.
YOLOV3, RPN) and predictions combined through voting.

Threats to Validity We identify two external threats to
validity. First, we evaluated robust OD techniques on two-
stage detectors only. While this may preclude insights into the
techniques on single-stage detectors, we find more existing
robust OD techniques [8, 16] are implemented on two-stage
versus single-stage detectors due to higher baseline mAP.
Second, our evaluation was performed separately against each
annotation fault type to help analyze their effects. However,
multiple fault types often occur together in OD datasets -
considering them together is an avenue for future work.

VI. RELATED WORK

Faults in OD Existing work on evaluating faults in OD
models have focused on salt-and-pepper noise and Gaussian
blurs in the test data [56, 57]. These types of noise simulate
image quality degradation through software defects (e.g., lossy
compression) or real-world factors (e.g., low-visibility weather
conditions), by inducing pixel corruptions in training images,
which soften distinguishing features between object classes.
Unlike salt-and-pepper noise, annotation faults do not soften
features. For example, bounding boxes associated with incor-
rect classes can be drawn over any unaltered image. Models
will attempt to learn features associated with an incorrect
annotation. Annotation faults lead to an abundance of incorrect
features [58], while salt-and-pepper noise reduce the number
of useful features overall [56], making annotation faults more
difficult to tolerate.

Ponce et al. [59] identified gaps in data quality in OD
datasets, forming the basis of annotation faults. Subsequent
work [53] focused on identifying faulty images, and purging
them from datasets. Unlike image classification, where there is
exactly one class per image, cleaning tools for OD must handle
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dense, overlapping objects in images, which is more compli-
cated and error-prone [60]. Furthermore, data cleaning reduces
the amount of trainable annotations in data-scarce applications.
We focus instead on robust OD techniques that tolerate the
presence of faulty training images, without discarding images.
Evaluation Metrics for OD The most popular metric to
evaluate OD models is mAP, whose limitations are summa-
rized in Section II. Ceccarelli et al. [61] address the criticality
difference between different object classes by assigning a
criticality score to each object in relation to other objects
in an image, by leveraging sequential trajectory information
in a moving scene. In contrast, we focus on a metric that
applies to static images without trajectory information. This
allows us to more generally evaluate OD accuracy on datasets
without sequential context — most OD datasets do not provide
this. Liao et al. [62] partially address the distance between
critical objects by proposing a distance ratio based on the 2D
projection of 3D objects in an image. In contrast, we leverage
the use of the commonly-used and well-defined IoU metric
between overlapping images, for generality of computation.
Hierarchical Classification Our robustness metric of OPD
builds on the idea of hierarchical classification (HC), where
similar classes are grouped under metaclasses. HC is a well-
studied problem where existing work focuses on identifying
correlations between classes and perturbing loss functions to
work with HC [63, 64]. In particular, Salay et al. [64] find
that HC is suited for use in safety-critical systems like AVs.
Unlike their work, we do not derive our own class hierarchy
- we use superclasses, as established by the dataset authors.

VII. CONCLUSIONS

Object detection (OD) datasets used for safety-critical appli-
cations inevitably contain annotation faults, which can degrade
the ability of models to learn and make correct predictions.
Thus, it is crucial to mitigate the effects of such faults on OD.

We systematically study the effects of annotation faults on
OD in three steps. First, we develop ODFI, which injects
annotation faults into OD datasets. Second, we introduce a
new robustness metric OPD that better captures superclass
mispredictions by OD models and evaluates the robustness of
individual OD models across datasets and fault types. Finally,
we compare three representative robust OD techniques.

Our experimental results on three OD datasets show that
single-stage detectors trained with faulty annotations perform
better in scenes containing more objects, redundant bounding
boxes have the least impact on robustness, and ensembles have
the highest overall robustness among the robust OD techniques
considered. Thus, ensembles are the most effective way to
mitigate the impact of annotation faults on OD applications.
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