Towards Ultra-Reliable CPS: Reliability Analysis of Distributed Real-Time Systems

Arpan Gujarati

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Cyber-Physical Systems (CPS)

Integration of computation, networking, and physical processes*

Computers control physical processes with feedback loops

Physical processes affect computations, and vice versa

* Lee. "The past, present, and future of cyber-physical systems: A focus on models." Sensors 15.3 (2015)

Arpan Gujarati (MPI-SWS)

Cyber-Physical Systems (CPS)

Integration of computation, networking, and physical processes*

- Computers control physical processes with feedback loops
- Physical processes affect computations, and vice versa

* Lee. "The past, present, and future of cyber-physical systems: A focus on models." Sensors 15.3 (2015)

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

with **feedback loops** 5, and vice versa

Embedded System Engineering Size, Weight, and Power ... plus Cost

Embedded System Engineering Size, Weight, and Power ... plus Cost

			Perioc
sense	Next a compute	ctivation actuate	n / deadline
		Dead	lline miss!
sense	comp	ute	actua
			-

Embedded System Engineering Size, Weight, and Power ... plus Cost

Arpan Gujarati (MPI-SWS)

Thesis PhD

Reliability Analysis of Distributed Real-Time Systems

T Best Presentation Award

Controller Area Network [ECRTS '18] Controller Area

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

T Distinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Thesis PhD

Reliability Analysis of Distributed Real-Time Systems

T Best Presentation Award

Controller Area Network [ECRTS '18] Controller Area

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

TDistinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Why do we need reliability analyses?

Arpan Gujarati (MPI-SWS)

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high power machinery
 - Electric motors, spark plugs inside automobiles

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high power machinery
 - Electric motors, spark plugs inside automobiles
- **Bit-flips** in registers, buffers, networks

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high power machinery
 - Electric motors, spark plugs inside automobiles
- **Bit-flips** in registers, buffers, networks

* Mancuso. "Next-generation safety-critical systems on multi-core platforms." PhD thesis, UIUC (2017)

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

One bit-flip in a 1 MB SRAM every 10¹² hours of operation 0.5 billion cars with an average daily operation time of 5% About 5000 cars are affected by a bit-flip every day

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

- Transmission errors Faults on the network
- Omission errors Fault-induced kernel panics, hangs
- Incorrect computation errors Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in networked systems

- Transmission errors Faults on the network
- Omission errors Fault-induced kernel panics, hangs
- Incorrect computation errors Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in networked systems

- Transmission errors Faults on the network
- Omission

Fault-induced errors are random events Cannot be predicted in advance

- Incorrec Faults in memory puncts
- Inconsistent broadcast errors Faults in networked systems

- Transmission errors Faults on the network
- Omission errors Fault-induced kernel panics, hangs
- Incorrect computation errors
 - Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in networked systems

Checksums and retransmissions

Dual Modular Redundancy (DMR)

ECC Memory + **Triple Modular Redundancy (TMR)**

Byzantine Fault Tolerance (BFT)

- Transmission errors Faults on the network
- Omission errors Fault-induced kernel panics, hangs
- Incorrect computation errors ► Faults in memory buffers
- Inconsistent broadcast errors Faults in networked systems

Checksums and retransmissions

Dual Modular Redundancy (DMR)

ECC Memory + **Triple Modular Redundancy (TMR)**

Byzantine Fault Tolerance (BFT)

Transmission errors ► Faults on the netw

Omission errors

- Fault-induced kernel panics, hangs
- Incorrect computation errors ► Faults in memory buffers
- Inconsistent broadcast errors Faults in networked systems

Dual Modular Redundancy (DMR)

ECC Memory + Triple Modular Redundancy (TMR)

Byzantine Fault Tolerance (BFT)

- Transmission errors
 Faults on the network
- Omission errors
 Fault-induced kernel pa SWaP-C
- Incorrect computational Size, Weight, and Power ...
 Faults in memory buffer
- Inconsistent broadcast errors
 Faults in networked systems

Arpan Gujarati (MPI-SWS)

Transmission errors

Real-time requirements

Fault-induced kernel para

Incorrect computational Size, Weight, and Power ... Faults in memory buffer

Inconsistent broadcast errors
 Faults in networked systems

Arpan Gujarati (MPI-SWS)

Industry:

Transmission errors

Real-time requirements

Safety certification

- Reliability thresholds
- < 10⁻⁹ failures/hour

Stappediate Size, Weight, and Power ... plus Cost

Inconsistent broadcast errors Faults in networked systems

Arpan Gujarati (MPI-SWS)

Arpan Gujarati (MPI-SWS)

Autonomous CPS landscape is **changing! New reliability analyses** are necessary.

Arpan Gujarati (MPI-SWS)

Motivating Trends

Ultra-reliability

Quantifiably negligible failure rates

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Motivating Trends

Ultra-reliability

Quantifiably negligible failure rates

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Motivating Trends

Ultra-reliability

Quantifiably negligible failure rates

COTS hardware

(inexpensive, but unreliable)

Inadequate resources

(developer hours, computing power, component costs)

Time-to-market pressures

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Thesis PhD

Reliability Analysis of Distributed Real-Time Systems

TBest Presentation Award

Network [ECRTS '18] Controller Area

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Reliability analysis of Ethernet-based distributed real-time systems

T Distinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Ethernet Time-Sensitive Networking (TSN)

Arpan Gujarati (MPI-SWS)

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Arpan Gujarati (MPI-SWS)

Ethernet Time-Sensitive Networking (TSN)

Priority classes

Statically reserved routes

Decreasing priority

Arpan Gujarati (MPI-SWS)

Atomic Broadcast

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Active Replication

DMR / TMR / Hybrid

Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Active Replication

DMR / TMR / Hybrid

Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous BFT proto [Pease et al., 19

Ethernet Time Sensitive Networking (TSN)

Statically reserved routes

Decreasing priority

Priority classes

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Periodic tasks and messages

14

14

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Step 3

DMR / TMR / Hybrid

Statically-checked hard real-time protocol

Priorit

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Ste Ste

DMR / TMR / Hybrid

Statically-checked hard real-time protocol

Priorit

[Pease et al., 198

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Q1. How often does the final actuation deviate from an error-free scenario (iteration failure)?

Replica Consistency over Ethernet [RTAS '20]

Physical plant reliable

Step 2

Q2. What is the likelihood of a control failure?

> Periodic Weakly-Hard Systems [ECRTS '19]

hard real-time protocol

Priorit

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Step 2

Q2. What is the likelihood of a control failure?

Periodic Weakly-Hard Systems [ECRTS '19]

hard real-time protocol

Priori

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events

• E.g., node crashes, link corruption

17

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events

• E.g., node crashes, link corruption

Poisson distribution using peak rates from maximum interference periods

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events

• E.g., node crashes, link corruption

For processors and switches **Poisson(n, \delta, \lambda_{crash})** = Pr(n crashes in an interval of length δ l crash rate λ_{crash})

For processors, switches, and network links

Poisson(n, \delta, \lambda_{corruption})

= Pr(n corruptions in an interval of length δ l corruption rate $\lambda_{corruption}$)

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Poisson distribution using peak rates from maximum interference periods

Physical plant reliable

Step 2

Q2. What is the likelihood of a control failure?

> Periodic Weakly-Hard Systems [ECRTS '19]

hard real-time protocol

Priorit

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Straw-man Solutions

Arpan Gujarati (MPI-SWS)

Straw-man Solutions

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Scalability challenges

- Empirical techniques scale poorly when evaluating low-probability events
- Formal methods often do not scale beyond small distributed models

Straw-man Solutions

Arpan Gujarati (MPI-SWS)

Scalability challenges

- Empirical techniques scale poorly when evaluating low-probability events
- Formal methods often do not scale beyond small distributed models

Reliability anomalies

In practice, the iteration failure probability may **significantly exceed** the estimated Pr (iteration failure)

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Goal: PUB > Pr (iteration failure)

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Example!

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Scalability challenges

Key idea 1: Tackle scalability through abstraction and pruning

Reliability anomalies

In practice, the iteration failure probability may **significantly exceed** the estimated Pr (iteration failure)

The problem of reliability anomalies

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

24

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

24

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

24

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

24

Arpan Gujarati (MPI-SWS)

Pr (iteration failure) increases despite decreasing component fault rate

Intuition: Sometimes, a node crash is good for the overall system, because it may reduce the probability of confusing a majority voting protocol in another part of the system!

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

 10^{-10}

Pr (iteration failure) increases despite decreasing component fault rate

Intuition: Sometimes, a node crash is good for the overall system, because it may reduce the probability of confusing a majority voting protocol in another part of the system!

For soundness, need to estimate failure probabilities for the entire search space [0, 10-5]

Combinatorial analysis

Combinatorial analysis

Arpan Gujarati (MPI-SWS)

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

For soundness, need to estimate failure probabilities for the entire search space [0, 10-5]

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Scalability challenges Key idea 1: Tackle scalability through abstraction and pruning **Reliability anomalies** Key idea 2: Ensure monotonicity to eliminate anomalies

Physical plant reliable

Step 2

Q2. What is the likelihood of

a control failure?

Periodic Weakly-Hard Systems [ECRTS '19]

hard real-time protocol

Priori

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Step 2

Q2. What is the likelihood of a control failure?

> Periodic Weakly-Hard (Systems [ECRTS '19]

hard real-time protocol

Priori

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Simplistic approach

$P_{UB} + \Delta > Pr$ (iteration failure)

Assumption:

1st iteration failure —> control system failure

FITUB > **FIT**control-system

$P_{UB} + \Delta > Pr$ (iteration failure)

Assumption:

1st iteration failure —> control system failure

Weakly-hard constraints*

* Bernat, Burns, and Liamosi. "Weakly hard real-time systems." IEEE transactions on Computers 50.4 (2001).

Weakly-hard constraints*

Example: (m, k) constraint

At least m out of every k consecutive iterations must be successful

* Bernat, Burns, and Liamosi. "Weakly hard real-time systems." IEEE transactions on Computers 50.4 (2001).

Weakly-hard constraints*

Example: (m, k) constraint

- At least m out of every k consecutive iterations must be successful
- If each iteration is labeled either as a Success or a Failure

ς

Temporal robustness as per (2, 3) constraint

* Bernat, Burns, and Liamosi. "Weakly hard real-time systems." IEEE transactions on Computers 50.4 (2001).

Robust			Iterations			; R	Robustness violation			
S		S	S	S	S	F	S	F	S	

* Sfakianakis et al.. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41.3 (1992): 442-447.

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

* Sfakianakis et al.. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41.3 (1992): 442-447.

Arpan Gujarati (MPI-SWS)

* Sfakianakis et al.. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41.3 (1992): 442-447.

Physical plant reliable

Step 2

Q2. What is the likelihood of

a control failure?

Periodic Weakly-Hard Systems [ECRTS '19]

hard real-time protocol

Priori

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Physical plant reliable

Step

Q2. What is the likelihood of

a control failure?

Periodic Weakly-Hard (Systems [ECRTS '19]

hard real-time protocol

Priori

Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Priorit

Physical plant reliable

Beyond hard constraints Periodic Weakly-Hard (S S t C S t C S Systems [ECRTS '19] hard real-time protocol Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Priori

Physical plant reliable

Beyond hard constraints Periodic Weakly-Hard (K S T C S T C S S Systems [ECRTS '19] hard real-time protocol Statically reserv

Transient fault-induced errors

Arpan Gujarati (MPI-SWS)

Thesis PhD

Reliability Analysis of Distributed Real-Time Systems

T Best Presentation Award

Controller Area Network [ECRTS '18] Controller Area

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

T Distinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Multiprocessor Hard Real-Time Scheduling

TOutstanding Paper Award

Schedulability Analysis of Linux-like Systems¹ [ECRTS '13, RTS Journal '15]

4	7 -	[Dead	line
\prod_1	T_1	T_2	T_1	T_{i}
Π_2			T_3	
-				
()		2	

Reliability Analysis of Distributed Real-Time Systems

TBest Presentation Award

Controller Area Network [ECRTS '18]

Scheduling Policy for Improved Utilization [RTSS '14]

T Distinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Multiprocessor Hard Real-Time Scheduling

TOutstanding Paper Award

Schedulability Analysis of Linux-like Systems¹ [ECRTS '13, RTS Journal '15]

Ĺ	- 4		Deadl	line
Π_1	T_1	T_2	T_1	T
Π_2			T_3	
_				
()		2	

Cloud

Reliability Analysis of Distributed Real-Time Systems

TBest Presentation Award Controller Area

Predictable Resource Allocation

TBest Student Paper Award

Swayam Autoscaler [Middleware '17]

Arpan Gujarati (MPI-SWS)

Towards "Ultra-Reliable" CPS: Reliability Analysis of Distributed Real-Time Systems

Scheduling Policy for Improved Utilization [RTSS '14]

T Distinguished Paper Award

Replica Consistency over Ethernet [RTAS '20]

Tableau VM Scheduler [EuroSys '18]

Clockwork for DNN Serving [OSDI '20]

