
Understanding the Resilience of Neural Network
Ensembles against Faulty Training Data

Abraham Chan, Niranjhana Narayanan, Arpan Gujarati, Karthik Pa�abiraman, Sathish Gopalakrishnan
�e University of British Columbia, Vancouver, BC, Canada

Email: {abrahamc, niranjhana}@ece.ubc.ca, arpanbg@cs.ubc.ca, {karthikp, sathish}@ece.ubc.ca

Abstract—Machine learning is becoming more prevalent in

safety-critical systems like autonomous vehicles and medical

imaging. Faulty training data, where data is either misla-

belled, missing, or duplicated, can increase the chance of

misclassi�cation, resulting in serious consequences. In this

paper, we evaluate the resilience of ML ensembles against

faulty training data, in order to understand how to build

better ensembles. To support our evaluation, we develop a

fault injection framework to systematically mutate training

data, and introduce two diversity metrics that capture the

distribution and entropy of predicted labels. Our experiments

�nd that ensemble learning is more resilient than any

individual model and that high accuracy neural networks are

not necessarily more resilient to faulty training data. Further,

we �nd that simple majority voting su�ces in most cases for

resilience in ML ensembles. Finally, we observe diminishing

returns for resilience as we increase the number of models

in an ensemble. �ese �ndings can help machine learning

developers build ensembles that are both more resilient and

more e�cient.

Index Terms—Error resilience, Machine learning, Training

I. Introduction
Machine learning (ML) is increasingly being used in safety-

critical applications ranging from medical diagnosis [1] to
autonomous driving [2]. Incorrect inferences by ML compo-
nents in such applications can lead to disastrous outcomes.
For example, if an ML component in an autonomous vehicle
misclassi�es a cracked pavement as a lane marking and steers
the car into the wrong lane, it may lead to fatalities. �ere-
fore, we need high accuracy in safety-critical ML applications.

Most ML components are developed using supervised learn-

ing, which is data-driven [3] because training datasets are
used to construct models that support inferring an output
or decision for a given input. �ere is li�le input from de-
velopers in the programming of ML components, apart from
choosing the model’s architecture and the training dataset.
Training datasets, as collections of input-output pairs, are
therefore integral to how ML components behave.

Model architectures are o�en chosen because they are
known to yield high accuracy when trained on well-curated
benchmark datasets. In practice, collecting high quality train-
ing datasets is an arduous task with potential for errors [4, 5].
For every input in the dataset, we need to indicate a suitable
output, and the output, typically, is a label to associate with
the input. Labelling tasks are o�en crowd-sourced, resulting
in poorly curated training datasets with a large fraction of
mislabelled data [6]. Even a quorum of domain experts may

+

Runtime Inputs

Vo
tin

g

Output

Trained
Model Instances

M3M1 M4M2
=Training

Data

e.g., mislabellings,
repetition, and removal faults parallel

NN-Ensemble
inferences

more
reliableDiverse Model

Architectures
M3M1 M4M2

Fig. 1: NN-Ensemble trains N models independently using
the same (faulty) training data. At runtime, it then uses
mechanisms like simple majority, plurality, or total proba-
bility voting to combine the individual classi�cation results.

sometime label data incorrectly, owing to human perceptions
and biases, or sensory limitations [7]. Further, if the datasets
themselves are constructed using ML, inaccuracies of the
underlying ML model carry forward as labelling faults [8].
Finally, errors during data cleaning and preprocessing may
corrupt or remove large fractions of the training dataset [9].

We believe that eliminating all faults in training data

when using a supervised learning approach is not practical.

�erefore, it is inadequate to choose ML models under the
assumption of fault-free training data - we also need to
understand and improve how ML components perform under
faulty training data. �is is the focus of this work1

We explore the use of ensemble learning methods such as
stacking, in which inferences from diverse neural networks
(NNs) are combined to improve the overall accuracy of the
model. We consider a simple approach that combines the
predictions of multiple separately-trained NNs via voting
only at the time of inference, as is common in many fault-
tolerant safety-critical architectures (Fig. 1). For convenience,
we refer to any NN-based ensemble learning architecture as
NN-Ensemble. To the best of our knowledge, we are the �rst

to systematically analyze the resilience of ensemble learning

across di�erent NN architectures and datasets.

Prior work on modeling faults in training data considers
every inaccurate input-output pair as random noise and then
a�empts to nullify the e�ect of this noise by, for example,
adding additional regularization layers in the network [7, 10].
Our study instead encompasses a broader set of training

1Resilience, in this work, refers to the ability of an ML-based system to
achieve high accuracy despite faults in the training data.

1

TABLE I: NN architectures used. † for CIFAR-10 only.

Name Depth Architecture Summary

NN Shallow 2 FC w/ 0.2 Dropout
RNN Shallow 2 LSTM (+ 1 Conv for GTSRB)*
CNN Moderate 3 Conv + 1 FC + Max Pooling
LeNet Moderate 2 Conv + 2 FC
ConvNet† Moderate 3 Conv + 3 FC + Max Pooling
DeconvNet† Moderate 4 Conv + 2 FC w/ 0.5 Dropout
AlexNet Moderate 5 Conv + 2 FC + Avg Pooling
VGG3† Moderate 6 Conv + 2 FC + Max Pooling
VGG16 Deep 13 Conv + 3 FC + Max Pooling
ResNet18† Deep 17 Conv + 1 FC + Avg Pooling
MobileNet(v1)† Deep 27 Conv + 1 FC + Avg Pooling
ResNet50 Deep 49 Conv + 1 FC + Avg Pooling

TABLE II: Image classi�cation datasets used

Name Dataset Size Task (# Classes)

Training Test

MNIST [12] 60,000 10,000 Handwri�en digits (10)
CIFAR-10 [13] 50,000 10,000 Objects and animals (10)
GTSRB [14] 39,209 12,630 Tra�c signs (43)

dataset faults. We consider mislabelling faults where data can
be erroneously labelled, repetition faults where input-output
pairs may be repeated, and removal faults where a fraction
of data may be deleted. Together, they not only express the
possibility of inaccurate input-output pairs, but also the pos-
sibility of one or more output classes being misrepresented,
due to either insu�ciencies in the data collection process or
errors in the data processing pipeline. We characterize the
e�ects of these fault on the prediction quality of di�erent NN
architectures and across di�erent datasets, as well as evaluate
the bene�ts of NN-Ensemble in tolerating such faults.

We make four contributions in this work:
1 We have built a fault injection framework TF-DM (Ten-

sorFlow Data Mutator) (brie�y introduced in a workshop ar-
ticle [11]) that systematically injects mislabelling, repetition,
and removal faults in con�gurable amounts during training,
2 We then characterize the resilience of NN-Ensemble for

di�erent datasets using the Accuracy Delta (AD) metric,
which measures the drop in a faulty model’s accuracy specif-
ically with respect to inputs that are correctly classi�ed by
the pristine model.
3 We go beyond accuracy and analyze the diversity of pre-

dictions from di�erent NN architectures using �ne-grained
metrics such as the Gini coe�cient and the Shannon equi-

tability index.2
4 We �nally consider many diverse NNs with di�erent

depths and complexities and three di�erent datasets (summa-
rized in Tables I and II) including the safety-critical German
Tra�c Sign Recognition Benchmark (GTSRB), which makes
this the �rst empirical study of its kind.

While we �nd that NN-Ensemble is more resilient than in-
dividual NN models, it is insu�cient to understand ensembles

2�ese metrics are typically used to characterize income inequality among
countries and species diversity in an ecosystem, respectively.

0 5 10 15 20 25 30 35 40
Label Class

0

500

1000

1500

2000

Fr
eq

ue
nc

y

(a) Pristine dataset

0 5 10 15 20 25 30 35 40
Label Class

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

(b) Dataset with faults

(c) Test image (d) Label class 4 (e) Label class 20

Fig. 2: (a, b) Label class distributions without faults and with
30% mislabellings (respectively); (c) test image for class 4; and
(d, e) reference images for classes 4 and 20 (respectively).

by only considering their �nal outputs - we also analyze en-
semble features like the prediction diversity, voting schemes
and resilience by label class to �nd areas for improvement.

We �nd that models with high accuracy are not necessarily
more resilient to faulty training data and that there are
discrepancies in resilience between label classes. We also
observe that plurality voting is as good as simple majority
voting for resilience in NN-Ensemble. �is demonstrates
that di�erent models typically do not converge on incorrect
predictions, which highlights the value of ensembles for fault
tolerance and detection. Finally, we �nd a diminishing return
for resilience as we increase the number of models.

II. Motivating Example

We present a simple example that motivates NN-Ensemble.
�e German Tra�c Sign Recognition Benchmark (GT-
SRB) [14] is a public dataset containing more than 50,000
images of 43 di�erent tra�c signs in Germany. It is used as
a training dataset for Autonomous Vehicles (AVs). We inject
the dataset with 30% random mislabelling faults. Fig. 2a and
Fig. 2b show the label distributions in GTSRB before and a�er
fault injection, respectively. �e distributions are di�erent.

We then train AlexNet on a pristine copy of GTSRB and
on the faulty copy, resulting in trained models M and Mf ,
respectively. We test both these models with an image of a 70
km/h speed limit sign (Fig. 2c). �e test image corresponds
to label class 4 in the dataset. We �nd that while M correctly
classi�es the test image as a 70 km/h speed limit sign (Fig. 2d),
Mf misclassi�es it as a right curve sign (Fig. 2e), which
belongs to label class 20 in the dataset. �is misclassi�cation
can cause an AV travelling at 70 km/h to suddenly slow down
and veer to its right, and potentially lead to an accident.

2

Suppose we use NN-Ensemble instead with a collection of
seven NN models (Table I). All models are trained on the
faulty dataset that is injected with 30% mislabelling faults,
and majority voting is used for prediction. We observe that
NN-Ensemble correctly classi�es the test image despite being
trained on the faulty dataset, as four out of these seven
models correctly classify the test image, thereby tilting the
majority in favour of the correct outcome.

Increasing the fault injection rate further, say, up to 50%,
actually reverses the majority. Four out of the seven models
now misclassify the speed sign. However, all incorrect predic-
tions belong to di�erent classes (e.g., one model misclassi�es
the test image as a right curve sign, another model misclas-
si�es it as a 20 km/h speed sign). NN-Ensemble can detect
this disagreement and signal the autonomous driving agent,
which in turn can alert the human driver. NN-Ensemble can
thus avoid catastrophic consequences even in this scenario.

�ese misclassi�cations occurred despite using the exact
same NN architectures trained on a lower quality version of
the same dataset, demonstrating the serious impact in�icted
by faulty training data. NN-Ensemble can provide protection
from training data faults in NNs. However, it incurs costs
in computation and power, which can be a deterring factor,
since safety-critical control systems o�en have strict time
constraints. System designers therefore need to decide if and
when NN-Ensemble is desired, and how to select models that
result in more resilient ensembles. �e empirical analysis in
this paper helps answer such questions.

III. Related Work
Work on noisy labels and other training dataset faults,

ML resilience and fault injection, ensemble learning, and
adversarial learning are all related to our work.

Noisy Labels and Other Faults while Training To
deal with the adverse e�ects of faulty training data, ML
researchers have proposed di�erent solutions. For example,
to address the noisy label problem, prior work has proposed
tools for identifying mislabelled data during preprocess-
ing [15, 16], specialized architectures where denoising layers
are added [17], and regularization techniques that are speci�c
to mislabelled data [7, 18]. To address other faults such
as missing or unequal distribution of data classes, such as
the problem of repetition in domain-speci�c datasets [5],
prior work has proposed to modify the training data using
resampling and clustering [19], or use mutation testing to
evaluate the e�cacy of test data [20]. In contrast, we consider
a general fault model in our evaluation of whether ensem-
bles built using o�-the-shelf NN architectures can withstand
faults, without any form of preprocessing.

ML Resilience and Fault Injection �ere has also been
work on improving the resilience of ML components in
the presence of di�erent types of faults, such as hardware
faults [21, 22], and in-the-wild distribution shi�s in the input
domain [23]. However, these papers do not typically consider
faults in the training data. �ere are also a number of fault
injectors developed for ML applications, such as Ares [24],

PyTorchFI [25], and TensorFI [26]. �ese tools also primarily
emulate only so�ware and hardware faults, e.g., by injecting
faults into the add and multiply ML operators, whereas we
perform fault injection in training datasets instead.
Ensemble Learning Ensemble learning is an ML ap-

proach that combines the results from multiple ML models to
improve inference accuracy. Most ensemble implementations
use the bagging approach where the same ML architec-
tures are trained using randomized subsets of the training
data [27–29] to generate variants. Unlike NN-Ensemble, this
avoids the need for resource-intensive retraining of algorith-
mically di�erent models, but the robustness of the ensemble
is limited by the capabilities of the chosen model archi-
tecture. More recently, ensemble methods such as stacking

have begun to consider diversity among di�erent model
architectures. Recent work shows that ensembles consisting
of diverse neural architectures can o�er improved inference
accuracy over individual learners [30–32]. However, we are

the �rst to evaluate and understand why ensembles are resilient

against training dataset faults. We analyze the resilience of

constituent models instead of treating ensembles as a black box.

Adversarial Learning Ensembles have also been used
to defend ML systems against adversarial learning, where
a�ackers use carefully-cra�ed inputs to trick ML models
during inference. However, our fault model is fundamentally
di�erent from adversarial learning. We look at randomly
introduced training dataset faults, which may result in faulty
ML models post training, i.e., models that are over�t or
under�t for one or more output classes and therefore lead to
misclassi�cation of (otherwise correctly classi�ed) test inputs.
An example ensemble-based defense framework against ad-
versarial learning is Athena by Meng et al. [33], which applies
di�erent sets of data transformations on test inputs prior to
feeding them into individual models, and then combines the
prediction results in an ensemble. Our tool TF-DM does not
transform individual inputs, but instead transforms the entire
dataset (through mislabellings, repetitions, and removals).

IV. Methodology
We begin by explaining how TF-DM injects faults into

training datasets, and then present the metrics we use for
reliability and diversity assessment.

A. Injecting Faults in Training Dataset

We have developed TF-DM [11], a fault-injection frame-
work that injects mislabelling, repetition, and removal faults
in labelled datasets. As mentioned in Section I, these fault
classes simulate a wide range of realistic scenarios where
faults are introduced into training datasets either via human
errors or through faults in the underlying so�ware libraries.
We formally specify the fault injection process below3 and
use the running example with the GTSRB dataset, introduced
in Section II, to explain each fault type.

Consider a labelled dataset D = {X ,Y}, where X and Y
denote an ordered set of input samples and labels. Let Xi

3�is was not included in the workshop article [11].

3

denote the ith input sample and Yi denote its label. Each
input sample Xi ∈ Rn is a vector with n features and each
label Yi ∈ {1, 2, . . . , L} identi�es one of the L output classes.
During fault injection, each fault type is parametrized using
an amount parameter (expressed in percentage) that decides
the quantum of faults injected. Based on D and amount
values, TF-DM can inject three types of faults.

1 Mislabelling Faults TF-DM overwrites a random
subset of labels with incorrect labels. For example, a right
turn road sign may be randomly mislabelled as a le� turn
sign. Suppose dataset D = {X ,Y} consists of |X | = |Y| =
d entries. TF-DM chooses df = d × amount indices in
{1, 2, . . . d} uniformly at random, which we denote as If .
TF-DM then transforms the dataset into a faulty dataset
Df = {X ,Yf}, such that |Yf | = |Y| and

∀x ∈ {1, 2, . . . , d} :

x ∈ If =⇒ Yf
x 6= Yx ∧ x 6∈ If =⇒ Yf

x = Yx. (1)

2 Repetition Faults TF-DM repeats a random subset
of input samples and corresponding labels in the dataset.
For example, a unique image of a right turn road sign may
be duplicated in the training dataset. Similar to mislabelling
faults, it chooses df = d × amount random indices from
{1, 2, . . . d}, which we denote as If . TF-DM then repeats
the input samples and labels at these indices, resulting in a
larger but faulty dataset Df = {X f ,Yf}. �e new dataset
consists of |X f | = |Yf | = d + df entries such that

∀x ∈ {1, 2, . . . , d} : X f
x = Xx ∧ Yf

x = Yx, and

∀y ∈ {1, 2, . . . , df} : X f
d+y = XIf

y
∧ Yf

d+y = YIf
y
. (2)

In the case of repetition faults, it is important to choose
the amount value judiciously as a larger amount of repeti-
tions may actually have a smaller impact on the ML model
behaviour. For instance, if amount = 99%, a vast majority
of the training dataset is simply trained twice, resulting in
negligible change in the trained ML model and its resulting
behaviour. However, if amount = 10%, the training process
is biased towards the subset of training data that is repeated,
thereby increasing the chances of over��ing by the model.

3 Removal Faults TF-DM deletes a fraction of the
training dataset randomly. For instance, random images of
right turn road signs may be deleted from the training
dataset. It chooses a set of random indices If ⊆ {1, 2, . . . d}
as de�ned above, and then transforms the training dataset
D = {X ,Y} into a smaller dataset Df = {X f ,Yf}, such
that |X f | = |Yf | = d− df and

∀x ∈ {1, 2, . . . , d} :

x ∈ If =⇒ Xx 6∈ X f ∧ Yx 6∈ Yf

x 6∈ If =⇒ ∃y ≤ d− df : X f
y = Xx ∧ Yf

y = Yx. (3)

B. Reliability Metrics

Accuracy is the most commonly used metric for measuring
the e�cacy of ML models. It is de�ned as the percentage of

input samples in the test dataset that are correctly classi�ed
by the model. However, using accuracy to measure the relia-
bility of the model in the presence of training dataset faults
con�ates two di�erent properties: (i) the model architecture’s
ability to infer the input-output relationship in a fault-free
scenario, and (ii) its ability to tolerate (training data) faults.
We, therefore, de�ne a new metric for reliability analysis: the
Accuracy Delta (AD). We de�ne AD as the relative change
in the faulty model’s accuracy with respect to the original
model. A higher value of AD implies lower resilience, and
vice versa. For instance, suppose we have two models in an
ensemble with 93% and 97% accuracy respectively. Assume
both models are retrained on a faulty dataset, both resulting
in 90% accuracy. While both models now have the same
accuracy, the former model is more resilient than the la�er,
as its AD is much lower than that of the la�er.

More formally, let Mgolden and Mfaulty denote two trained
instances of the same model architecture M . Suppose that
Mgolden is trained on a pristine copy of dataset D, whereas
Mfaulty is trained on a faulty version Df of the dataset. For
convenience, we refer to Mgolden and any fault-free instances
of M as golden models, and Mgolden ’s performance on the
test dataset as the golden accuracy of M with respect to D.

Let D′ denote the test dataset consisting of test inputs X ′
and labels Y ′, de�ned similarly to D in Section IV-A above.
We assume that D′ is fault-free, i.e., we do not inject faults
into test datasets. Suppose that Mgolden(X ′i) and Mfaulty(X ′i)
denote the classi�cation outputs of the golden and faulty
model instances for input sample X ′i in the test dataset.
We de�ne the AD of Mfaulty as a ratio of the number
of test inputs that are classi�ed correctly by Mgolden but
misclassi�ed by Mfaulty to the total number of test inputs
that are classi�ed correctly by Mgolden , i.e.,

Mfaulty ’s AD w.r.t. D′ =

|{X ′
i |Mfaulty (X ′

i) 6= Y ′
i and Mgolden (X ′

i) = Y ′
i}|

|{X ′
i |Mgolden (X ′

i) = Y ′
i}|

. (4)

Eq. (4) checks the bias when measuring the reliability of
di�erent faulty instances of the same model architecture.
However, if we want to evaluate the AD of NN-Ensemble
that uses N di�erent model architectures, we need to get rid
of all input samples in D′ that are classi�ed incorrectly by
even one golden model. �at is, if NN-Ensemble uses model
architectures M1,M2, . . . ,MN , we de�ne its AD as follows.

NN-Ensemble’s AD w.r.t. D′ =∣∣∣∣
{
X ′

i

∣∣∣∣ NN-Ensemble (X ′
i) 6= Y ′

i and
N∧

x=1
Mx

golden (X ′
i) = Y ′

i

}∣∣∣∣∣∣∣∣
{
X ′

i

∣∣∣∣ N∧
x=1

Mx
golden (X ′

i) = Y ′
i

}∣∣∣∣
. (5)

C. Diversity Metrics

Diversity among ML models can be measured in several
ways; unfortunately, there is no single universally accepted
de�nition [34, 35]. Furthermore, as mentioned in Section III,

4

prior work does not evaluate diversity in the presence of
faults. Having concrete metrics for measuring diversity is
important so that we can understand how to build more
resilient ensembles. We explain below with an example why
existing metrics used for ensemble learning such as Yule’s

Q statistic [36] are not suitable for measuring diversity
for reliability goals. We then propose the use of the Gini

coe�cient and the Shannon equitability index as diversity
metrics. We are the �rst (to the best of our knowledge) to
use these metrics in ML reliability studies.

1) Oracle Outputs vs. Categorical-Valued Outputs: Earlier,
we supposed that a model outputs one of the L output
classes during inference, i.e., M(Xi) ∈ {1, 2, . . . , L}. We
refer to such outputs as categorical-valued. Alternatively,
each model can simply output a binary value denoting
whether its classi�cation is correct or incorrect (also known
as oracle outputs). Among the metrics we discuss, the Shan-
non equitability index relies on categorical-valued outputs,
whereas Yule’s Q statistic and Gini coe�cient rely on oracle
outputs (see Fig. 3). Even though oracle outputs cannot be
determined at runtime, they can be easily determined for
test datasets. We denote these using the oracle function O,
i.e., O(M(Xi)) ∈ {correct = 1, incorrect = 0}.
2) Yule’s Q Statistic: Consider instances M1 and M2 of

two distinct model architectures, trained on the same faulty
dataset Df . Suppose that M1 and M2’s outputs when tested
on dataset D′ = {X ′,Y ′} are related using counters d11,
d10, d01, d00, where |X ′| = d11 + d10 + d01 + d00 and each
dab = |{X ′i | O(M1(X ′i)) = a and O(M2(X ′i)) = b}|. �e
Q statistic for models M1 and M2 is then de�ned as

Q1,2 = (d11d00 − d01d10)/(d11d00 + d01d10) (6)

and varies between -1 and 1. Q1,2 = 0 implies that M1

and M2 are statistically independent, whereas Q1,2 = −1
or Q1,2 = 1 imply that M1 and M2 are positively or
negatively correlated (respectively). For N di�erent model
architectures, NC2 pairwise Q statistics can be de�ned; the
overall Q statistic denoted Qav is de�ned as their average.

We show how the oracle outputs di�er among three
models M1, M2, and M3 when these models are tested
using datasets D′ and D′′ (Table III (le�)), and we also
show the pairwise and average Q statistics based on these
results (Table III (right)). Even though the models behave
very di�erently when tested with datasets D′ and D′′, the
Q statistics are close to -1 or 1, indicating that the models
are correlated. �erefore, diversity metrics like Yule’s Q
statistics and other similar pairwise metrics such as double-

fault measure and disagreement measure [35] are less useful
for reliability, particularly when choosing between di�erent
models.

3) Gini Coe�cient: We could immediately infer two key
properties (Table III). First, many output combinations occur
with very low frequency, e.g., all three models classify cor-
rectly only 3 out of 20,000 times. Secondly, di�erent output
combinations may or may not have a uniform representation,

M1 M2 M3 M4 M5

Ensemble Diversity for
Accuracy

G
in

i C
oe

ffi
ci

en
t

(D
is

tr
ib

ut
io

n)

ML Models

Te
st

 Im
ag

es

...

(a) Oracle outputs

M1 M2 M3 M4 M5

Shannon Equitability
Index (Diversity)

ML Models

Te
st

 Im
ag

es

...

3 4 3 2 0

1 2 3 4 5

1 4 4 4 3

Test Label

3

...

5

4

(b) Class labels as outputs

Fig. 3: Di�erences between Oracle metrics (e.g., Yule’s Q
statistic, the Gini coe�cient), and Shannon equitability index.

e.g., the case where M2 and M3 classify correctly but M1

misclassi�es occurs 19,400 out of 20,000 times. �ese insights
can allow NN-Ensemble to assign greater weights to more
trustworthy models (and vice versa). In this regard, we
propose to use the Gini coe�cient as a metric to measure
model diversity in NN-Ensemble.

�e Gini coe�cient is conventionally used to measure the
income inequality within a group of people [37]. If xi is the
income of person i, x̄ is the average income, and P is the
population size, then the Gini coe�cient is given by:

G =

 P∑
i=1

P∑
j=1

|xi − xj |

/2P 2x̄. (7)

We compute the Gini coe�cient for ML models using
Eq. (7) as follows. Suppose N models M1,M2, . . . ,MN are
tested using dataset D′ = {X ′,Y ′}. Like Yule’s Q statistic,
we use the oracle outputs for computing G. For each input
sample X ′k , oracle outputs O(M1(X ′k)), . . . ,O(MN (X ′k)),
form a binary vector belonging to {0, 1}N . We consider this
set {0, 1}N of all possible vectors as our population, and
hence we use P = 2N . We let each income parameter xi

correspond to the number of inputs samples in X ′ for which
the oracle outputs form the ith vector in {0, 1}N .

�e Gini coe�cient varies from 0 to 1. Smaller values
imply that the possibility of di�erent output combinations
is evenly distributed, whereas larger values imply that a few
output combinations are predominant. For example, the Gini
coe�cients for models M1, M2, and M3 in Table III are
G(D′) = 0.8612 and G(D′′) = 0.4997, respectively. Unlike
the Q statistic, these illustrate the di�erence between the two
datasets. A higher value for D′ indicates the presence of a
dominant output combination, which could be used to reduce
the number of models in NN-Ensemble. In contrast, a lower
value for D′′ suggests the use of equally-weighted majority
voting in NN-Ensemble as opposed to dropping models.

4) Shannon Equitability Index: While useful for charac-
terizing the di�erences among models, the Gini coe�cient
relies on oracle outputs, and hence cannot account for the

5

TABLE III: Output frequencies (le�) and statistics (right)

Oracle Outputs Frequencies

M1 M2 M3 D′ D′′

0 0 0 110 4990
0 0 1 2 2
0 1 0 240 5000
0 1 1 19400 5000
1 0 0 240 5000
1 0 1 2 2
1 1 0 3 3
1 1 1 3 3

Type
Statistics

D′ D′′

Q1,2 −0.9997 −0.9988
Q2,3 0.9997 0.9992
Q3,1 −0.9993 −0.9960
Qav −0.3331 −0.3319
G 0.8612 0.4997

contributions of di�erent voting algorithms towards reliabil-
ity. �erefore, we consider another �ne-grained metric, the
Shannon equitability index, to determine whether multiple
models misclassify input samples similarly.

�e Shannon equitability index is a popular metric to mea-
sure diversity of species in ecosystems [38], and is commonly
denoted as H . If S denotes the total number of unique species
in an ecosystem, and pi denotes the proportion of the entire
community made up of species i, then

H = −
(

S∑
i=1

pi ln pi

)/
lnS. (8)

We compute the Shannon equitability index for ML models
as follows. Suppose N models M1,M2, . . . ,MN are tested
using dataset D′ = {X ′,Y ′}. Unlike the Gini coe�cient,
we use categorical-valued model outputs, which identify
one of the class labels in {1, 2, . . . , L}. For each input
sample X ′k , outputs M1(X ′k), . . . ,MN (X ′k) form a vector
belonging to {0, 1, . . . , L}N . �is can be translated into a
frequency distribution over the label set. In particular, we
consider each label as a unique species, and hence denote
S = L in Eq. (8). For each species i ∈ {1, 2, . . . , L}, we let
pi = |{j | M j(X ′k) = i}|/N . �is allows us to compute the
Shannon equitability index H(X ′k) for a single input sample.

For example, consider the MNIST dataset of handwri�en
digits and two test images X ′1 = “1” and X ′2 = “3”. �e
predictions of seven di�erent models M1,M2, . . . ,M7 for
each of these test images are summarized in Table IV (le�).
�ese are then translated into frequency distributions over
the label set, as shown in Table IV (right). Using Eq. (8)
and the approach outlined above, H(X ′1) and H(X ′2) are
computed as follows (S = 10 as there are 10 digits in MNIST).

H(X ′
1) = −

4
7

ln 4
7

+ 3× (1
7

ln 1
7

)

ln 10
= 0.50106, (9)

and H(X ′
2) = −

7× (1
7

ln 1
7

)

ln 10
= 0.84510. (10)

�e Shannon equitability index ranges between 0 and 1,
where 0 represents no diversity and 1 represents maximum
diversity. In the example above, the model outputs are much
more diverse in the case of the test image X ′2 = “3”, which
is also indicated by the higher value of H(X ′2) in Eq. (10).

TABLE IV: Model predictions (le�) and distributions (right)

Models
Predictions

X ′
1 = “1” X ′

2 = “3”

M1 “1” “0”
M2 “1” “1”
M3 “1” “3”
M4 “1” “2”
M5 “2” “6”
M6 “4” “4”
M7 “3” “5”

Labels
Distributions

X ′
1 = “1” X ′

2 = “3”

“0” 0/7 1/7
“1” 4/7 1/7
“2” 1/7 1/7
“3” 1/7 1/7
“4” 1/7 1/7
“5” 0/7 1/7
“6” 0/7 1/7
“7” 0/7 0/7
“8” 0/7 0/7
“9” 0/7 0/7

In our experiments, we report the overall Shannon equi-
tability index for any dataset D′ = {X ′,Y ′} by computing
the average over all input-speci�c indices, i.e.,

H =

|X ′|∑
i=1

H(X ′
i)

/|X ′|. (11)

We also report conditional Shannon equitability indices that
are computed over a subset of input samples satisfying a
speci�c condition. We describe these in Section V-D.

V. Evaluation
In our evaluation, we answer �ve research questions

(RQs) characterizing the behavior of NN-Ensemble and its
constituent models in the presence of faulty training data.
• Is NN-Ensemble more resilient to faulty training datasets

than individual ML models? (RQ1)
• How does inequality in the prediction outcomes across

models contribute to NN-Ensemble’s behaviour? (RQ2)
• Can we characterize the diversity of models in a way

that correlates with NN-Ensemble’s resilience? (RQ3)
• Does NN-Ensemble’s resilience vary with label classes?

(RQ4)
• Does increasing the number of models in NN-Ensemble

improve its resilience? (RQ5)
�ese are answered in Sections V-B to V-F, respectively. We
start by describing our experimental setup in Section V-A.

A. Experimental Setup

We used two machines for training and inference: (i) an
Intel i7-10750H CPU with 8GB RAM and a Nvidia RTX 2600
GPU with 6GB VRAM; and (ii) an Intel i5-9300H CPU with
8GB RAM and a Nvidia GTX 1650 GPU with 4GB VRAM. We
implemented all models in Python4 using the Keras [39] API
and trained and executed them using TensorFlow 2.4.1 [40].
We evaluated a total of 308 con�gurations across seven
di�erent models, three di�erent datasets, and three di�erent
fault types, injected with di�erent amounts of faults (see
Tables I and II, and Section IV-A). For each con�guration, we
trained each of the seven models individually, but executed

4NN-Ensemble is available at h�ps://github.com/DependableSystemsLab/
NN-Ensemble

6

https://github.com/DependableSystemsLab/NN-Ensemble
https://github.com/DependableSystemsLab/NN-Ensemble

TABLE V: Golden accuracies (%) of ML models

Name MNIST GTSRB Name CIFAR-10

AlexNet 97.46 86.93 ConvNet 84.75
CNN 99.00 90.90 DeConvNet 86.81
LeNet 98.62 93.33 MobileNet 86.60
NN 97.45 84.68 ResNet18 90.24
ResNet50 97.97 88.57 ResNet50 92.77

RNN 94.06 71.50 VGG3 84.98
VGG16 97.68 94.74 VGG16 90.37

the seven models in parallel during inference. To minimize
variance in our results, we evaluated each con�guration 20
times. As a result, the training required a total of 15.5 days,
and the inference experiments required 4 hours in total.

For MNIST and GTSRB datasets, we used seven commonly
used models: AlexNet, CNN, LeNet, NN, ResNet50, RNN,
and VGG16. For CIFAR-10, to achieve comparable baseline
accuracies, we used a di�erent set of models that de�ne
the state-of-the-art for this dataset: ConvNet, DeconvNet,
MobileNet, ResNet9, ResNet50 VGG3, VGG16.

Table V summarizes these models and their accuracies
when trained using pristine datasets (i.e., golden accuracies).
Since these models di�er both architecturally and algorith-
mically, e.g., residual networks contain skip layers whereas
some neural networks contain only convolutional layers, they
may behave di�erently in the presence of training data faults.
�erefore, this allows us to evaluate the diversity of o�-the-
shelf models, for fault tolerance using NN-Ensemble.

B. RQ1: Resilience of NN-Ensemble vs. Individual Models

We evaluate the resilience of individual models towards
di�erent fault types by measuring their respective ADs
(Eq. (4)) a�er fault injection. Speci�cally, we injected faults
in the datasets while varying the fault amounts from 10% to
80% for removal and mislabelling faults, and from 10% to 50%
for repetition faults (recall from Section IV that injecting a
high amount of repetitions may have negligible e�ects).

We focus on the results for CIFAR-10 and GTSRB (Fig. 4).5
ResNet50 and VGG16 have the highest accuracies among

all models for CIFAR-10 and GTSRB (Table V), respectively.
For CIFAR-10 (Figs. 4b and 4c), we �nd that deeper NNs with
more layers (i.e., MobileNet, ResNet18, VGG16) incur higher
AD than shallower models (i.e., ConvNet and DeconvNet).
While deeper NNs generally give higher accuracies, they
are also more prone to over��ing. However, we �nd that
there are exceptions to this trend, particularly for repetition
faults in Fig. 4a. One explanation is that the shallower NNs
contain more fully connected layers compared to convolution
layers. Fully connected layers tend to learn image pa�erns
while convolution layers learn complex features. �erefore,
repeated images have a higher likelihood to a�ect fully
connected layers. In contrast, mislabelled images may inhibit
convolution layers from learning correct features. For GTSRB
(Figs. 4d to 4f), we also observe that shallower NNs are

5Due to space constraints, we do not show results for MNIST – we
obtained results similar to the other two benchmarks.

TABLE VI: Accuracy (%) of NN-Ensemble trained on faulty
data. Values in parentheses denote the highest individual
accuracy among the constituent models in the ensemble.

Fault Type MNIST CIFAR-10 GTSRB

Golden 98.79 (99.00) 90.28 (92.77) 92.40 (94.74)
Repetition (30%) 98.75 (98.96) 86.93 (84.57) 92.02 (93.21)
Removal (30%) 98.68 (97.05) 82.02 (79.35) 88.26 (86.43)
Mislabelling (30%) 97.62 (95.29) 79.93 (72.69) 91.61 (89.02)

more resilient than deeper NNs. We also �nd that RNNs are
generally the least resilient NN. �is is because the RNN’s
feedback loops tend to increase the risk of over��ing.

In most runs, the AD increases with the amount of faults
injected, as expected, except for repetition faults in Figs. 4a
and 4d. As discussed in Section IV-A, 30% repetition faults
might cause more over��ing than 50%. �is e�ect is more
evident in Residual Net (ResNet) models. ResNet models
contain skip connections between layers, allowing neurons
from one layer to jump over one or more subsequent layers -
some neurons can bypass small numbers of over��ed layers.

Finally, we measured the AD of NN-Ensemble, as de�ned
in Eq. (5), with majority voting in place. NN-Ensemble always

incurs a lower or a comparable AD than every other model

in isolation. �e only exception we observed was when
80% of the dataset was injected with mislabelling faults,
since in this case all models including NN-Ensemble had
trouble classifying the test images. We thus conclude that NN-

Ensemble has higher resilience than individual models.

While we evaluated resilience using the AD metric, we
also report the accuracies of NN-Ensemble trained on golden
and faulty training data (Table VI). NN-Ensemble achieves
higher accuracy than individual models when trained with
faulty data. However, NN-Ensemble is outperformed by the
highest accuracy individual model for the golden cases and
30% repetition for MNIST and GTSRB. Under fault-free (and
low AD) conditions, simple majority voting may not be the
most optimal voting scheme. Nonetheless, NN-Ensemble still
has a higher accuracy over most of its constituent models.

Observation 1 Higher accuracy neural networks are not nec-

essarily more resilient to faulty training data. Neural network

architectures respond di�erently to faulty training data.

Observation 2 NN-Ensemble has higher or comparable re-

silience than the most resilient individual model.

C. RQ2: Inequality in Prediction Outcomes across Models

�e AD experiments showed that NN-Ensemble is more
resilient to training dataset faults than all individual models.
To understand the reasons, we delve deeper into how the
prediction outcomes of di�erent models vary across the
di�erent images in the test dataset, when NN-Ensemble with
simple majority voting is helpful, and when might other
options such as weighted voting schemes be more bene�cial.

Our �rst analysis was of the percentage of test images that
are correctly classi�ed by Ncorrect = 0, 1, 2, . . ., or 7 models

7

Con
vN

et

Deco
nv

Net

Mob
ileN

et

ResN
et1

8

ResN
et5

0
VGG16

VGG3

NN-En
s*

0

5

10

15

20

25

30
AD

 (%
)

10
30
50

(a) CIFAR-10, Repetition

Con
vN

et

Deco
nv

Net

Mob
ileN

et

ResN
et1

8

ResN
et5

0
VGG16

VGG3

NN-En
s*

0

5

10

15

20

25

30

35

40

AD
 (%

)

10
30
50
80

(b) CIFAR-10, Removal

Con
vN

et

Deco
nv

Net

Mob
ileN

et

ResN
et1

8

ResN
et5

0
VGG16

VGG3

NN-En
s*

0

20

40

60

80

100

AD
 (%

)

10
30
50
80

(c) CIFAR-10, Mislabelling

Alex
Net

CNN
LeN

et NN
RNN

ResN
et5

0
VGG16

NN-En
s*

0

5

10

15

20

AD
 (%

)

10
30
50

(d) GTSRB, Repetition

Alex
Net

CNN
LeN

et NN
RNN

ResN
et5

0
VGG16

NN-En
s*

0

10

20

30

40

50

60

70

AD
 (%

)

10
30
50
80

(e) GTSRB, Removal

Alex
Net

CNN
LeN

et NN
RNN

ResN
et5

0
VGG16

NN-En
s*

0

20

40

60

80

100

AD
 (%

)

10
30
50
80

(f) GTSRB, Mislabelling

Fig. 4: AD incurred by individual models and NN-Ensemble when trained with faulty CIFAR-10 and GTSRB datasets. �e
error bars in the results indicate the 95% con�dence intervals. Lower values are be�er.

TABLE VII: Gini coe�cients for di�erent datasets

Fault Type MNIST CIFAR-10 GTSRB

Golden 0.975 0.824 0.895
Repetition (30%) 0.974 0.810 0.922
Removal (30%) 0.972 0.807 0.915
Mislabelling (30%) 0.960 0.774 0.894

(Fig. 5). �e results explain why NN-Ensemble’s resilience
outperforms individual models. In most cases, a large fraction
of test images falls to the right of the majority trendline.
However, comparing the results for CIFAR-10 and GTSRB, we
observe that di�erent datasets may bene�t di�erently from
NN-Ensemble. For instance, in the case of GTSRB (Figs. 5e
and 5f), NN-Ensemble is ine�ective only when the fault
amounts are very high (over 50%). In contrast, the majority
trendline for CIFAR-10 grows linearly with the fault amount,
and indicates that NN-Ensemble is less e�ective even when
the fault amount is low (under 10%).

To further our understanding of the di�erences between
NN-Ensemble’s behavior for di�erent datasets, we computed
the Gini coe�cients (Eq. (7)) for each dataset, for di�erent
fault types with a 30% fault rate (Table VII). Recall that
larger values of the Gini coe�cient indicate the presence of
predominant output combinations, which is the case for both
the MNIST and GTSRB datasets. �ese datasets may therefore
do well with a reduced number of models in NN-Ensemble.

On the other hand, CIFAR-10 has lower Gini coe�cients,
indicating that output combinations across the models are
more uniformly distributed. CIFAR-10 involves more di�cult
classi�cation tasks than MNIST and GTSRB, especially since
CIFAR images belong to a mix of animals, plants, vehicles,
and other miscellaneous classes rather than being domain-
speci�c. Nonetheless, NN-Ensemble is still e�ective in sce-
narios where fault amounts are less than 50% in CIFAR-10.

Observation 3 NN-Ensemble with simple majority can cor-

rectly classify the test images in most con�gurations; alternate

voting schemes may not provide much resilience improvement.

D. RQ3: Diversity among Predicted Labels

Prediction outcomes for alternative voting schemes like
plurality voting depend on whether incorrect classi�cations
by di�erent models are identical. We evaluate this aspect of
NN-Ensemble using another diversity metric, the Shannon
equitability index, since it relies on categorical-valued out-
puts, i.e., it is a function of the label classes predicted by
di�erent ML models, as explained in Section IV-C4.

We computed the Shannon equitability indices for CIFAR-
10 and GTSRB datasets with di�erent types and varying
amounts of faults (Table VIII). We report the overall index H
as de�ned in Eq. (11). Additionally, we report four conditional
indices that are also computed using Eq. (11) but over only a
subset of all input samples that result in one of the following:

8

0 0.2 0.4 0.6 0.8 1

0

10

30

50 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(a) CIFAR-10, Repetition

0 0.2 0.4 0.6 0.8 1
0

10

30

50

80 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(b) CIFAR-10, Removal

0 0.2 0.4 0.6 0.8 1
0

10

30

50

80 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(c) CIFAR-10, Mislabelling

0 0.2 0.4 0.6 0.8 1

0

10

30

50 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(d) GTSRB, Repetition

0 0.2 0.4 0.6 0.8 1
0

10

30

50

80 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(e) GTSRB, Removal

0 0.2 0.4 0.6 0.8 1
0

10

30

50

80 0
1
2
3
4
5
6

Percentage of Test Images

Fa
ul

t A
m

ou
nt

(f) GTSRB, Mislabelling

Fig. 5: Percentage of test images correctly classi�ed by Ncorrect = 0, 1, 2, . . . , 7 models. Shaded bars illustrate the value
of Ncorrect . �e darkest shade corresponds to Ncorrect = 0 (none of the models classify correctly) and the lightest shade
corresponds to Ncorrect = 7 (all models classify correctly). �e percentages are illustrated along the x axis. Results for
di�erent fault amounts are stacked along the y axis. �e trendline in each graph indicates the majority boundary, i.e., the
percentage of test images for which Ncorrect ≥ 4.

TABLE VIII: Shannon equitability indices for CIFAR-10 and GTSRB datasets with varying types and amounts of faults.

Type %
CIFAR-10 GTSRB

H Hplural Ĥplural Hsimple Ĥsimple AD H Hplural Ĥplural Hsimple Ĥsimple AD

Golden - 0.19 0.14 0.39 0.12 0.41 0 0.08 0.06 0.34 0.06 0.35 0

Repetition
10 0.22 0.16 0.40 0.15 0.42 2.16 0.05 0.04 0.31 0.04 0.33 0.09
30 0.30 0.25 0.45 0.22 0.47 1.63 0.05 0.04 0.32 0.04 0.33 0.03
50 0.25 0.18 0.42 0.16 0.44 2.12 0.06 0.05 0.33 0.05 0.34 0.09

Removal
10 0.27 0.23 0.43 0.20 0.45 2.67 0.05 0.04 0.32 0.04 0.33 0.04
30 0.29 0.24 0.44 0.21 0.46 4.79 0.07 0.05 0.32 0.05 0.33 0.19
50 0.32 0.26 0.45 0.23 0.47 6.71 0.08 0.07 0.33 0.06 0.34 0.21

Mislabelling
10 0.28 0.21 0.44 0.19 0.46 3.31 0.07 0.06 0.32 0.05 0.34 0.13
30 0.38 0.31 0.50 0.26 0.52 17.23 0.09 0.08 0.34 0.07 0.35 0.60
50 0.46 0.39 0.54 0.32 0.55 38.55 0.19 0.17 0.37 0.15 0.37 8.23

• correct classi�cation with simple majority (Hsimple),
• incorrect classi�cation with simple majority (Ĥsimple),
• correct classi�cation with plurality voting (Hplural), or
• incorrect classi�cation with plurality voting (Ĥplural).

For instance, the conditional index Ĥplural quanti�es whether
all N models in NN-Ensemble fail similarly or di�erently
when plurality voting results in an incorrect classi�cation.

�e Shannon equitability indices range between 0 and 1,
where a higher value denotes more diversity (Section IV-C4).
H is highest for CIFAR-10 under mislabelling faults, and is
lowest for GTSRB under repetition and removal faults. �is
corroborates our results in Section V-C that it is di�cult for
models to reach consensus in the former scenario, leading to
incorrect classi�cation, whereas models tend to achieve con-
sensus in the la�er scenario leading to correct classi�cation.
H is thus a good indicator of resilience.

To establish high con�dence in the results, all correct
classi�cations must be backed by a low diversity score,
i.e., both Hsimple and Hplural should ideally be minimal. In
addition, there should not be any high-con�dence incorrect
classi�cation, which can be ensured if all the corresponding

diversity scores are high. In other words, Ĥsimple and Ĥplural

should ideally both be maximized.
We observe a large and consistent di�erence of more

than 0.2 between H∗ and Ĥ∗ for both simple majority and
plurality voting across all fault types and amounts for both
the CIFAR-10 and GTSRB datasets (Table VIII). �is suggests
that NN-Ensemble is a useful tool when high-con�dence
predictions are needed for safety-critical domains. We also
�nd a negligible di�erence between simple majority and
plurality voting, which implies that both are equally good.

Finally, we also determine if the H values and AD are
correlated (Table VIII). For each dataset, we compute the
coe�cient of determination, R2, to evaluate the degree of
linear correlation between two variables. R2 ranges between
0 (no �t between two variables) and 1 (perfect �t between
two variables). �ese were 0.11, 0.83, and 0.78 for MNIST,
CIFAR-10 and GTSRB, respectively. Since MNIST’s AD are
extremely low (less than 10%), they do not correlate well
with H . For every other dataset, the AD values exhibit
high (positive) correlation with H . �is show that consensus
opportunities in NN-Ensemble diminish when the AD of the

9

airplane
autom

obile
bird
cat
deer
dog
frog
horse
ship
truck

0

0.2

0.4

0.6

0.8

1
Correct

0
1
2
3
4
5
6
7

Label Class

P
er

ce
nt

ag
e

of
 T

es
t I

m
ag

es

(a) No faults

airplane
autom

obile
bird
cat
deer
dog
frog
horse
ship
truck

0

0.2

0.4

0.6

0.8

1
Correct

1
2
3
4
5
6
7

Label Class
P

er
ce

nt
ag

e
of

 T
es

t I
m

ag
es

(b) 30% removals

ai
rp

la
ne

au
to

m
ob

ile bi
rd ca

t
de

er
do

g
fro

g
ho

rs
e

sh
ip

tru
ck

Predicted Labels

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck

Ac
tu

al
 L

ab
el

s

20

40

60

(c) Confusion matrix

Fig. 6: Percentage of CIFAR-10 test images that are cor-
rectly classi�ed by N models in NN-Ensemble, illustrated
by label class, without faults (a) and with removals (b).
Trendline indicates majority boundary. Shaded bars represent
the percentage of test images that are correctly classi�ed by
Ncorrect = 0, 1, 2, . . . , 7 models. �e confusion matrix for the
faulty case is illustrated in (c).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0

0.2

0.4

0.6

0.8

1
Correct

0
1
2
3
4
5
6
7

Label Class

P
er

ce
nt

ag
e

of
 T

es
t I

m
ag

es

(a) GTSRB, no faults

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0

0.2

0.4

0.6

0.8

1
Correct

0
2
3
4
5
6
7

Label Class

P
er

ce
nt

ag
e

of
 T

es
t I

m
ag

es

(b) GTSRB, 30% mislabelling

Fig. 7: Same as Figs. 6a and 6b, but for the GTSRB dataset.

constituent models increase (i.e., they are less resilient), and
NN-Ensemble is unlikely to agree on incorrect classi�cations.
Consequently, NN-Ensemble is likely to detect the faults.

Observation 4 Plurality voting is as good as simple majority

voting (and vice versa) for resilience.

Observation 5 Diversity among predicted labels, computed

using the Shannon equitability index, correlates with resilience.

E. RQ4: Resilience by Label Class

We analyze how NN-Ensemble’s resilience varies with
label class. We evaluated CIFAR-10 and GTSRB for 30%
removal and mislabelling faults, respectively (Figs. 6 and 7).
We found similar results for repetition faults, and omit them.

We examined how the prediction outcomes for CIFAR-10
vary across models before fault injection (i.e., during the
golden run). Classes “bird”, “cat”, “deer”, and “dog” incur
a high number of incorrect classi�cations relative to other
classes (Fig. 6a). We then injected removal faults (30%) in
the CIFAR-10 dataset and again measured the class-wise
prediction outcomes, but only on the subset of test images
that were correctly classi�ed by all models in the golden
scenario (similar to how we measured AD). �e “cat” class

is the least resilient to removal faults (Fig. 6b). On the other
hand, classes like “dog” are quite resilient despite incurring
high number of incorrect classi�cations earlier. �erefore,
there is no correlation between the accuracy of a label class
and its resilience. �is observation also holds for imbalanced
datasets like GTSRB. In GTSRB (Figs. 7a and 7b), prior
to fault injection, NN-Ensemble incurs maximum incorrect
classi�cations for classes 6, 18, 21, 27, 30, and 41. A�er
injecting mislabelling faults (30%), the classes 0, 19, 21, and
27 are the least resilient. Note that TF-DM’s training data
faults impact all label classes equally prior to inference, and
all the experiments are repeated over multiple runs.

We a�empt to understand why certain classes are dispro-
portionately impacted by faulty training data by examining
the confusion matrix of CIFAR-10 a�er fault injection, shown
in Fig. 6c. �e confusion matrix plots the percentage of
correct classi�cations by NN-Ensemble along the diagonal,
and the percentage of misclassi�cations in the o�-diagonal
elements, where a darker shade represents a higher percent-
age. �e x-axis is the predicted label, while the y-axis is the
actual label. We observe that “cat” images are mostly likely
to be misclassi�ed as “dog” and “frog”. One option to boost
resilience is to increase the number of di�erentiating training
examples between “cat” and the other two classes. Another
option is to select and train models in the ensemble so that
the classi�cation accuracy of speci�c classes is improved. We
�nd that the Gini coe�cient of NN-Ensemble when “cat”
is misclassi�ed is 0.858 compared to 0.6, the average over
other classes. �is means that it is more likely that the
same combination of models misclassify “cat” than the other
classes. An ensemble consisting of some specialists rather
than all generalists may be one way to address this disparity.

Observation 6 NN-Ensemble’s resilience varies with label

classes, and this is independent of its accuracy per label class.

F. RQ5: Do More Models Yield Be�er Resilience?

�us far, we evaluated NN-Ensemble using seven di�erent
models (Table I). In this section, we determine if fewer models
are su�cient. Recall from Section V-D that NN-Ensemble
should generally have a high Ĥ∗ but low H∗ to be resilient.
We thus use the di�erence between these two indices as an
indication of NN-Ensemble’s resilience.

We compute ∆H = Ĥsimple −Hsimple for CIFAR-10 and
GTSRB with N = 3, 5, 7 (Fig. 8), at 30% faults for each fault
type. We use the top N most resilient ML models in NN-
Ensemble, based on average AD. For example, in GTSRB at
N = 3, we use CNN, LeNet, and VGG16. At N = 5, we add
AlexNet and NN.

We �nd that ∆H is smaller for smaller values of N . �e
increase in ∆H is more prominent when N is increased from
N = 3 to N = 5 than from N = 5 to N = 7. �is is
because both Hsimple and Ĥsimple are low when N is small,
but Ĥsimple is higher for larger values of N , making ∆H
larger. However, as N increases and less resilient models are
included in the mix, there is a diminishing return on ∆H .

10

Repetition Removal Mislabelling0.00

0.05

0.10

0.15

0.20

0.25
H

3
5
7

(a) CIFAR-10

Repetition Removal Mislabelling0.00

0.05

0.10

0.15

0.20

0.25

0.30

H

3
5
7

(b) GTSRB

Fig. 8: ∆H = Ĥsimple −Hsimple for N = 3, 5, 7. 30% faults.

Observation 7 NN-Ensemble is more resilient if more models

are used. However, there are diminishing returns as more

models with high or comparable AD are added to NN-Ensemble.

VI. Discussion
Limitations Our evaluations are limited by the size of

our dataset. We have used TF-DM to inject faults in the
training data set and retrain models from scratch. For large
datasets like ImageNet [41], the training time could take up
to two weeks per con�guration on standard hardware [42].
To avoid this training time overhead, transfer learning has
been used by other work (i.e., models are initialized with
pre-trained weights, and training is performed over fewer
epochs). However, we have not examined the e�ect of faulty
training data on transfer learning, and hence do not use it.

Further, NN-Ensemble requires multiple inference models,
which demands additional resources. Designers thus need to
balance the consequences of failures with operational costs.

Finally, the models we have used are algorithmically and
architecturally distinct from each other. �is approach neces-
sitates retraining all models – the weights are not reusable.

Implications We �nd that di�erent features of neural net-
work architectures (i.e., convolution layers, fully connected
layers, skip connections) respond uniquely to di�erent types
of training dataset faults. Training dataset faults, however,
do not occur in isolation (e.g., repetition can be combined
with mislabelling faults). An ensemble provides superior
resilience compared to individual models, since no one model
is resilient to all fault types.

In situations when time-constrained decisions are needed,
we could run all models in parallel and then vote. On the
other hand, we may want to conserve energy and execute
additional models only when necessary (for instance, when
two models disagree we can use additional models for infer-
ence). Diversity metrics like the Gini coe�cient and Shannon
equitability index are useful for understanding the value of
diverse models, which could guide us in making such choices.

One of the more powerful implications of our work is
that NN-Ensemble is valuable when the data distribution is
di�erent at deployment time relative to the training data.
Such di�erences can be modelled as training data faults, and
NN-Ensemble can mitigate them. Moreover, even when NN-
Ensemble may not be able to recover from a disagreement
among the di�erent versions, it is able to detect a problem.

In a safety-critical system, such a disagreement can trigger
a system-level mode transition to a safe(r) controller, which
can then shi� the system to a fail-safe mode [43].
Better NN Architectures or Training Data? We show

that faulty training data can cause ML models, even with
state-of-the-art NN architectures, to incur large AD and
degrade their classi�cation accuracy. For instance, when a
training dataset is imbalanced and has multiple copies of the
same input-output pair, then the ML model may over�t to the
data that is represented in excess of the normal occurrence
of that input. �is raises the question of whether we should
invest in more resilient NN architectures (model-driven ML)
or higher quality training data (data-driven ML) [44].
Ensemble of Specialists vs Generalists NN-Ensemble is

constructed using general purpose NN models. We �nd that
NN-Ensemble has weaker classi�cation abilities in certain
label classes (Section V-E). We believe that adding specialist
models could mitigate this issue. �e specialist models could
be trained using more examples from speci�c label classes in
the dataset. To track their success, developers could compute
class-speci�c ∆H and check whether it has increased with
the addition of specialist models in the ensemble. Care must
be taken to ensure that the addition of specialist models does
not degrade the overall accuracy of the ensemble. �is idea
has been brie�y explored in the context of strengthening
ensemble defences against adversarial examples [45].
Using Second Choices We considered taking the second

choices of individual models into account. We were moti-
vated by observations that (i) there was general consistency
between second choice predictions - disagreement between
second choices could indicate a fault and (ii) the second
choice prediction was o�en correct when the �rst choice was
incorrect. Unfortunately, we found that the ∆H values were
very low (i.e., 0.05 on average) for second choices, meaning
they would not be useful for misclassi�cation detection using
simple majority voting. Nonetheless, there is still useful in-
formation embedded in the second choice predictions, which
can be extracted using alternative voting schemes or dark
knowledge distillation [46]. �is is an area for future work.

VII. Conclusions and Future Work
We evaluated NN-Ensemble, which applies ensemble learn-

ing to improve the resilience of machine learning (ML)
components against training data faults. We build TF-DM
to methodically inject faults in training data and evaluate
NN-Ensemble. We �nd that (1) accuracy does not necessarily
correlate with resilience, (2) NN-Ensemble can signi�cantly
improve resilience over individual models, and (3) correct
decisions can be made in NN-Ensemble with high consensus
using simple majority voting, and (4) there is diminishing
return in resilience with increasing number of models in NN-
Ensemble.

In the future, we plan to explore more e�cient ways of
generating ML diversity that minimize both the training and
inference times. We also plan to apply NN-Ensemble to real-
world safety-critical systems.

11

VIII. Acknowledgements
We thank the anonymous reviewers for their valuable

comments. �is work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), and
a Four Year Fellowship from UBC.

References
[1] J. G. Richens, C. M. Lee, and S. Johri, “Improving the accuracy

of medical diagnosis with causal machine learning,” Nature

Communications, vol. 11, no. 1, p. 3923, 2020.
[2] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,

“Hands O� the Wheel in Autonomous Vehicles?: A Systems
Perspective on over a Million Miles of Field Data,” in Proc. of

DSN’18, 2018.
[3] R. Salay, R. �eiroz, and K. Czarnecki, “An Analysis of ISO

26262: Machine Learning and Safety in Automotive So�ware,”
in SAE Technical Paper, 2018.

[4] C. G. Northcu�, A. Athalye, and J. Mueller, “Pervasive Label
Errors in Test Sets Destabilize Machine Learning Benchmarks,”
2021, arXiv:2103.14749.

[5] B. L. Sturm, “�e GTZAN dataset: Its contents, its faults,
their e�ects on evaluation, and its future use,” CoRR, 2013,
arXiv:1306.1461.

[6] J. C. Chang, S. Amershi, and E. Kamar, “Revolt: Collaborative
Crowdsourcing for Labeling Machine Learning Datasets,” in
Proc. of CHI’17, 2017.

[7] D. Karimi, H. Dou, S. K. War�eld, and A. Gholipour, “Deep
learning with noisy labels: Exploring techniques and remedies
in medical image analysis,” 2020, arXiv:1912.02911.

[8] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and
C. Ré, “Snorkel: Rapid Training Data Creation with Weak
Supervision,” �e VLDB Journal, vol. 29, no. 2, pp. 709–730,
2020.

[9] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data Cleaning:
Overview and Emerging Challenges,” in Proc. of SIGMOD’16,
2016.

[10] B. Frénay and M. Verleysen, “Classi�cation in the Presence of
Label Noise: A Survey,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 25, no. 5, pp. 845–869, 2013.
[11] N. Narayanan and K. Pa�abiraman, “TF-DM: Tool for Studying

ML Model Resilience to Data Faults,” in Proc. of DeepTest, 2021.
[12] Y. LeCun, C. Cortes, and C. Burges, “MNIST hand-

wri�en digit database,” ATT Labs [Online]. Available:

h�p://yann.lecun.com/exdb/mnist, vol. 2, 2010.
[13] A. Krizhevsky, “Learning multiple layers of features from tiny

images,” Tech. Rep., 2009.
[14] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man

vs. computer: Benchmarking machine learning algorithms
for tra�c sign recognition,” Neural Networks, no. 0, pp. –
, 2012. [Online]. Available: h�p://www.sciencedirect.com/
science/article/pii/S0893608012000457

[15] P. Ostyakov et al., “Label Denoising with Large Ensembles of
Heterogeneous Neural Networks,” 2019, arXiv:1809.04403.

[16] C. E. Brodley and M. A. Friedl, “Identifying and Eliminating
Mislabeled Training Instances,” in Proc. of AAAI’96, 1996.

[17] A. J. Bekker and J. Goldberger, “Training deep neural-networks
based on unreliable labels,” in Proc. of ICASSP’16, 2016.

[18] X. Xia, T. Liu, B. Han, C. Gong, N. Wang, Z. Ge, and Y. Chang,
“Robust Early-Learning: Hindering the Memorization of Noisy
Labels,” in Proc. of ICLR’21, 2021.

[19] N. Rout, D. Mishra, and M. K. Mallick, “Handling Imbalanced
Data: A Survey,” in Proc. of ASISA’18. Springer, 2018.

[20] L. Ma et al., “Deepmutation: Mutation testing of deep learning
systems,” CoRR, 2018, arXiv:1805.05206.

[21] M. Beyer, A. Morozov, E. Valiev, C. Schorn, L. Gauerhof,
K. Ding, and K. Janschek, “Fault Injectors for TensorFlow:

Evaluation of the Impact of Random Hardware Faults on Deep
CNNs,” 2020, arXiv:2012.07037.

[22] G. Li, K. Pa�abiraman, and N. DeBardeleben, “TensorFI: A
Con�gurable Fault Injector for TensorFlow Applications,” in
Proc. of ISSREW’18, 2018.

[23] P. W. Koh, S. Sagawa, S. M. Xie, M. Zhang, A. Balsubramani,
W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, T. Lee et al., “WILDS:
A benchmark of in-the-Wild Distribution Shi�s,” in Proc. of

ICML’21, 2021.
[24] B. Reagen et al., “Ares: A Framework for �antifying the

Resilience of Deep Neural Networks,” in Proc. of DAC ’18, 2018.
[25] A. Mahmoud et al., “PyTorchFI: A Runtime Perturbation Tool

for DNNs,” in Proc. of DSN-W’20, 2020.
[26] G. Li, K. Pa�abiraman, and N. DeBardeleben, “TensorFI: A

Con�gurable Fault Injector for TensorFlow Applications,” in
Proc. of ISSREW’18, 2018.

[27] A. Wasay, B. T. Hentschel, Y. Liao, S. Chen, and S. Idreos,
“MotherNets: Rapid Deep Ensemble Learning,” in MLSys, 2020,
arXiv:1809.04270.

[28] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Ba-
tra, “Why M Heads are Be�er than One: Training a Diverse
Ensemble of Deep Networks,” 2015, arXiv:1511.06314.

[29] L. Breiman, “Stacked regressions,” Machine Learning, vol. 24,
pp. 49–64, 1996.

[30] C. M. Farrelly, “Deep vs. Diverse Architectures for Classi�ca-
tion Problems,” 2017, arXiv:1708.06347.

[31] C. Ju, A. Bibaut, and M. J. van der Laan, “�e Relative Perfor-
mance of Ensemble Methods with Deep Convolutional Neural
Networks for Image Classi�cation,” 2017, arXiv:1704.01664.

[32] M. A. Hedeya, A. H. Eid, and R. F. Abdel-Kader, “A Super-
Learner Ensemble of Deep Networks for Vehicle-Type Classi-
�cation,” IEEE Access, vol. 8, pp. 98 266–98 280, 2020.

[33] Y. Meng, J. Su, J. O’Kane, and P. Jamshidi, “ATHENA: A
Framework based on Diverse Weak Defenses for Building
Adversarial Defense,” 2020.

[34] E. Tang, P. Suganthan, and X. Yao, “An analysis of diversity
measures,” Machine Learning, vol. 65, pp. 247–271, 10 2006.

[35] L. Kuncheva and C. Whitaker, “Measures of Diversity in
Classi�er Ensembles and �eir Relationship with the Ensemble
Accuracy,” Machine Learning, vol. 51, pp. 181–207, 05 2003.

[36] G. U. Yule, “On the Association of A�ributes in Statistics,”
Philosophical Transactions of the Royal Society of London, vol.
194, pp. 257–319, 1900.

[37] G. Pya�, “On the Interpretation and Disaggregation of Gini
Coe�cients,” �e Economic Journal, vol. 86, no. 342, pp. 243–
255, 1976.

[38] R. K. Peet, “Relative Diversity Indices,” Ecology, vol. 56, no. 2,
pp. 496–498, 1975.

[39] F. Chollet et al., “Keras,” h�ps://keras.io, 2015.
[40] M. Abadi et al., “TensorFlow: Large-scale machine learning

on heterogeneous systems,” 2015. [Online]. Available: h�ps:
//www.tensor�ow.org/

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
Proc. of CVPR’09, 2009.

[42] L. V. Lakshmanan, M. Munn, and S. Robinson, Machine Learn-

ing Design Pa�erns, 2020.
[43] L. Sha et al., “Using simplicity to control complexity,” IEEE

So�ware, vol. 18, no. 4, pp. 20–28, 2001.
[44] P. Liu, L. Wang, G. He, and L. Zhao, “A Survey on Active

Deep Learning: From Model-driven to Data-driven,” 2021,
arXiv:2101.09933.

[45] M. Abbasi and C. Gagné, “Robustness to Adversarial Examples
through an Ensemble of Specialists,” 2017, arXiv:1702.06856.

[46] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge
in a Neural Network,” 2015, arXiv:1503.02531.

12

http://www.sciencedirect.com/science/article/pii/S0893608012000457
http://www.sciencedirect.com/science/article/pii/S0893608012000457
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/

	Introduction
	Motivating Example
	Related Work
	Methodology
	Injecting Faults in Training Dataset
	Reliability Metrics
	Diversity Metrics
	Oracle Outputs vs. Categorical-Valued Outputs
	Yule's Q Statistic
	Gini Coefficient
	Shannon Equitability Index

	Evaluation
	Experimental Setup
	RQ1: Resilience of NN-Ensemble vs. Individual Models
	RQ2: Inequality in Prediction Outcomes across Models
	RQ3: Diversity among Predicted Labels
	RQ4: Resilience by Label Class
	RQ5: Do More Models Yield Better Resilience?

	Discussion
	Conclusions and Future Work
	Acknowledgements

