
EtherTime: Cross-vendor Evaluation of PTP/NTP
on Ethernet-based COTS Embedded Platforms

Vincent Bode
Technical University of Munich

Munich, Germany
vincent.bode@tum.de

William Shen
University of British Columbia

Vancouver, Canada
wshen05@student.ubc.ca

Arpan Gujarati
University of British Columbia

Vancouver, Canada
arpanbg@cs.ubc.ca

Abstract—We design and develop EtherTime, a tool for em-
pirical evaluation of open-source implementations of the widely
adopted Precision Time Protocol and Network Time Protocol
standards. EtherTime is designed for distributed embedded
systems networked over Ethernet. To demonstrate its benefits, we
assemble a testbed of Raspberry Pi 4/5, Xilinx ZUBoard 1CG,
and NVIDIA Jetson TK-1 boards, and carry out a measurement-
based evaluation of four popular open-source implementations –
PTPd, LinuxPTP, SPTP, and Chrony. EtherTime is successful in
highlighting their limitations with regards to resource contention
(specifically network and memory) and faults of various kinds
(with/without hardware clock support). We open-source Ether-
Time and all datasets derived from this empirical study.

I. INTRODUCTION

High-precision clock synchronization is a foundational re-
quirement for a wide range of distributed and real-time sys-
tems. It enables applications such as accurate location esti-
mation via Global Navigation Satellite Systems (GNNSs) [1],
cryptographic certificate validation [2], seamless audio/video
playback [3], and efficient profiling and coordination in dis-
tributed computing [4]. It also supports fault-tolerant archi-
tectures, such as those using double- or triple-modular lock-
step redundancy, where tightly synchronized clocks ensure that
all replicas execute in unison [5]. Without this coordination,
safety-critical systems like those in avionics cannot reliably
meet deadlines or maintain consistent behavior in the presence
of faults, undermining their designed resilience.

Our goal is to examine how software-based clock synchro-
nization performs in next-generation cyber-physical systems
(CPS) built from commodity off-the-shelf (COTS) compo-
nents. Unlike traditional high-assurance systems that rely
on specialized hardware for synchronization [5], consumer-
grade robots and unmanned vehicles favor low-cost, flexible
solutions built on Ethernet and general-purpose hardware. To
improve their reliability, designers may adopt fault-tolerant
architectures inspired by high-assurance systems [6–9]. How-
ever, lacking access to custom synchronization hardware,
such designs must depend on software clock synchronization
protocols, such as Precision Time Protocol (PTP) [10] and
Network Time Protocol (NTP) [11]. The effectiveness of fault
tolerance in these contexts thus hinges on the reliability of
the underlying synchronization. Yet little is known about how
different implementations compare or how developers should

choose among them, especially under adverse conditions com-
mon in embedded and industrial environments.

To address this gap, we present EtherTime, a tool for
fair, automated, cross-vendor benchmarking of clock synchro-
nization protocol implementations on Ethernet-based COTS
platforms. Instead of introducing new high-accuracy measure-
ment methods [12], EtherTime relies on established software-
based offset measurements that trade some precision for easier
deployment and greater portability. Its main focus is on testing
the resilience of existing synchronization implementations; by
injecting diverse failure scenarios, EtherTime enables users to
automatically assess protocol behavior under CPU contention,
network faults, and other challenging conditions.

We deploy EtherTime on a heterogeneous testbed consisting
of Raspberry Pi 4/5, Xilinx ZUBoard 1CG, and NVIDIA
Jetson TK-1 boards, evaluating four widely used open-source
implementations of the NTP and PTP standards. Our study
covers 265 distinct configurations and over 1000 profiling runs,
uncovering practical limitations under stress and providing in-
sights into robustness and scalability. We distill these findings
into best-practice recommendations for configuring software-
based synchronization, and open-source both EtherTime1 and
the complete dataset from our experiments2.

II. BACKGROUND

Among the many clock synchronization protocols explored
over the years [10, 11, 14–19], PTP and NTP have emerged as
widely adopted standards for local- and wide-area networks,
respectively. Our focus is on embedded systems, where PTP
is more relevant due to its higher accuracy and suitability for
local synchronization. PTP operates with two roles: master
and slave. The master periodically broadcasts its local time,
and each slave estimates the clock offset by combining this
with a propagation delay estimate obtained through a separate
message exchange [20]. This offset is then used to synchronize
the slave’s local clock with the master. A key design consider-
ation in PTP is how timestamps are captured. Software-based
timestamping introduces variability due to delays in the OS
and networking stack, whereas hardware timestamping enables
more accurate synchronization by recording timestamps at the

1https://github.com/caps-tum/EtherTime
2https://github.com/caps-tum/EtherTime-Dataset

https://github.com/caps-tum/EtherTime
https://github.com/caps-tum/EtherTime-Dataset

S1: Discovery S2: Best Master Clock Algorithm (BMCA)Peer
Data S3: Calibration S4: Clock Step S5: Clock Slew S6: Stable

Converging SynchronizedNetwork Domain Logic Clock Synchronization

Fig. 1. Lifecycle of a PTP slave. S1 discovers remote clocks, typically via multicast announcements. S2 determines master–slave roles among peers using a
standardized algorithm [13], based on, e.g., configured priorities and clock quality. S3 obtains coarse estimates of the clock offset. S4 attempts to directly
overwrite the slave’s local clock; this is generally restricted to initial synchronization, as it can violate the assumption that time flows forward continuously.
S5 gradually slews the clock to reduce the remaining offset (e.g., Linux limits the rate to 500 parts per million. In S6, the local clock is made available to
applications, although the slave may still transition back and resynchronize to earlier stages if conditions change.

network interface, just before transmission or upon recep-
tion [21]. Obtaining a global time reference at the master (e.g.,
UTC) is beyond PTP’s scope and often unnecessary for many
applications. When needed, however, such references can be
sourced from a GNNS receiver, an atomic clock, or another
PTP-synchronized domain.

Our goal is to understand what can reasonably be expected
from current implementations of PTP, and under what con-
ditions its assumptions and guarantees begin to break down.
Out of the six stages in the lifecycle of a PTP slave (see
Fig. 1), we focus on Stage S6, where the local clock signal is
ready to be consumed by applications. While synchronization
continues, this stage reflects the system’s normal operating
mode. However, since a slave can revert to earlier stages due
to changes in network conditions, such as connectivity loss
or large offset excursions, we also examine what causes such
regressions, especially when behavior differs across implemen-
tations. To enable meaningful comparisons, we ensure that all
PTP instances across vendors and platforms are evaluated in
comparable synchronization states.

III. RELATED WORK

Dedicated hardware solutions can provide high-precision
synchronization with strong timing guarantees, but they often
entail significant deployment and maintenance costs [22]. By
contrast, protocols like PTP allow modern real-time systems to
use commodity Ethernet or Wi-Fi for clock synchronization,
lowering costs but also weakening timing guarantees. Hence,
a systematic evaluation of these reliability–cost trade-offs is
essential to inform production-scale deployment.

Several works have compared NTP and PTP theoretically
and empirically, identifying key sources of uncertainty such
as jitter and asymmetry [23, 24]. Other efforts have focused
on fault tolerance, investigating failure modes that arise from
aging hardware in long-lived deployments [25], discrepancies
between hardware and software assumptions [26], and vulnera-
bilities in adversarial settings [27, 28]. Approaches to mitigate
such risks include tracking multiple time sources to eliminate
single points of failure [29, 30].

Researchers have also examined protocol limitations in
specific domains. For instance, Mani et al. [31] demonstrated
that existing synchronization protocols fail to meet the con-
straints of IoT platforms, and proposed algorithmic simplifi-
cations with hardware offloading. Others have studied PTP’s
deficiencies in industrial WANs [32], recommended unicast
configurations for datacenter use [33], or attempted to emulate

hardware timestamping over Wi-Fi [34]. However, many of
these evaluations are restricted in scope, limited to simulations
or a narrow range of implementations and configurations.

A broader issue across much of the literature is a lack
of reproducibility. Studies are often limited to one or two
implementations and rarely include open datasets or bench-
marking frameworks [35–39]. For example, Schriegel et al.
[12] note that most evaluations require manual setup, external
hardware, or simulation-only models, none of which scale to
cross-platform comparison. While cross-platform benchmark-
ing tools exist for domains like MPI [40] and DDS [41] stan-
dards, no comparable infrastructure currently exists for clock
synchronization protocols. The OpenClock framework [42]
makes progress in this direction but requires adoption of its
custom clock abstraction layer, limiting its general applicabil-
ity to real-world systems.

Complementary efforts such as TrueTime [4] and Time-
line [43] integrate clock uncertainty into application logic
through simulation and API abstractions but do not support
real-time synchronization via mainstream protocols like PTP.
Likewise, TSN-based approaches can improve synchronization
accuracy under network load [44], but remain non-trivial to
deploy. Moreover, TSN only addresses timing accuracy across
the network; much of the residual error originates from on-
board effects, such as processing delays between the network
interface and application software [45].

Security remains a critical but under-addressed aspect of
clock synchronization. Many PTP implementations lack pro-
tections against clock manipulation, whether via denial-of-
service, forced resets, or malicious skew [28]. While exten-
sions have been proposed to enhance PTP’s resilience [29,
46–49], standardization remains incomplete, and none of the
implementations we evaluate offer native support. A system-
atic security evaluation lies outside the scope of this study.

Taken together, these studies highlight key limitations of
existing synchronization protocols across domains and under
various constraints. Yet, there remains a lack of reproducible,
implementation-diverse evaluations that span platforms and
configurations—especially in the embedded systems domain.
Our work aims to address this gap through EtherTime.

IV. MOTIVATION

We aim to design a distributed system for collecting and
measuring data from various clock synchronization protocol
implementations, with two primary goals: first, to enable
the automated execution of complex, carefully orchestrated

experiments, such as fault-tolerance evaluations; and second,
to support multiple protocol implementations concurrently
in a fair and comparable manner, ensuring consistent con-
ditions across experiments. Existing studies typically adopt
one of two approaches. The first relies on ad hoc scripting,
often combining implementation-reported accuracy metrics
from PTP/NTP with hardware-based measurements. While
common, this method demands substantial manual effort,
is error-prone, and typically supports only a single imple-
mentation. The second approach employs commercial tools,
e.g., Meinberg’s Track Hound3, Spirent Sentinel4, Timebeat5,
and Microchip TimeMonitor6, which, though powerful, are
often tied to proprietary ecosystems and lack broader in-
teroperability. A few open-source alternatives exist, such as
NTPmon7 and ntpperf8, but these are largely focused on NTP
and support only a narrow range of implementations with
limited measurement capabilities. To enable more rigorous
and comparable empirical analysis in future work, there is a
clear need for more accessible, reliable, and flexible tools for
collecting and analyzing synchronization data across diverse
clock synchronization protocols.

Automation enables far more reliable data acquisition than
manual experimentation. It can also manage the installation
and configuration of different implementations, along with
built-in data analysis, enabling end users to perform cross-
vendor benchmarking with minimal effort. To ensure compat-
ibility with a wide range of clock synchronization hardware
and software, and to support seamless deployment across envi-
ronments, the design avoids physical instrumentation methods.
Techniques such as using oscilloscopes to measure circuit-
level phase differences for estimating precise clock offsets [44,
50–53] are excluded, as they are invasive, require specialized
equipment, and do not scale well. We also exclude modeling,
simulation, and formal analytical techniques [12], which de-
pend on tightly controlled environments, are restricted to spe-
cific hardware platforms, and often fail to capture differences
between protocol implementations.

PTP already exposes internal accuracy metrics at runtime
through the so-called integrated measurement approach [12],
which offers a means to gauge synchronization performance.
Hence, we can read out the offset estimate from the PTP
implementation for every synchronization packet that PTP
sends. However, simply installing an implementation and
observing these reported metrics is insufficient. It is equally
important to assess how reliable these protocols remain under
conditions that degrade accuracy, such as resource contention
or faults, including software or hardware resets. Our goal is
to systematically explore the conditions under which clock
synchronization protocols may fail, and to stress-test their
robustness under adverse operational conditions.

3https://www.ptptrackhound.com
4https://www.spirent.com/assets/u/spirent-sentinel
5https://www.timebeat.app/
6https://www.microchip.com/en-us/product/TimeMonitor
7https://docs.ntpsec.org/latest/ntpmon.html
8https://github.com/mlichvar/ntpperf

<4 <4 <4 <5 <5 <5 <X <X <X <X <N <N
' 4 ' 4 ' 4 ' 4 ' 4 ' 4 ' 4

X X
Isolated PTP Network

Netgear GS308

U U

Smart PDU
X

General Purpose Network

EtherTime
Workers

ó Orchestrator
� Data Processing Engine

< Embedded Board X Router/Switch EtherTime Software Components

Board Support: ' Hardware Timestamping 4 Real-Time Clock

— Wired Network – – Wireless Network · · · Power Lines

3× Raspberry Pi 4, 3× Raspberry Pi 5 ' 4 (ë 6.6.20 + RPi)
4× Xilinx ZUBoard1CG ' 4 (ë 6.6.10 + Petalinux),
2× NVIDIA Jetson TK-1 (ë 3.10.40 + Tegra)

Note: Each kernel (ë) has indicated vendor-specific patches enabled.

<

Fig. 2. Overview of the EtherTime system deployed on our testbed.

V. ETHERTIME

To realize our objectives, we develop EtherTime, imple-
mented in Python and deployed on a distributed cluster of
embedded devices that are connected over Ethernet (Fig. 2).
Clock synchronization and orchestration/data collection op-
erate over separate, isolated network links to avoid interfer-
ence. The synchronization network uses Ethernet and connects
devices through two cascaded Gigabit Ethernet switches.9

The general-purpose network is for orchestration and data
collection, and combines wired and wireless links,10 though
no time-critical packets are transmitted over WiFi. EtherTime
comprises three main components: a central orchestrator,
distributed workers, and a central data processing engine.

The orchestrator bootstraps the experimental environment,
manages the cluster nodes and smart Power Delivery Units
(PDUs), injects failures, and hosts the database that collects
logs streamed from the boards. Its primary responsibility is to
ensure that all experiments, including complex ones involving
fault tolerance, can be conducted fully automatically.

Each node runs a worker process that installs and manages
the corresponding clock synchronization clients, reconfiguring
them as needed using predefined EtherTime configuration
templates. This guarantees equivalent configurations across
nodes, which is critical for fair comparisons. To ensure re-
producible starting conditions, the worker performs an initial
synchronization to the master clock with coarse precision
(within 1 ms), then introduces a large, fixed offset (60 s) to
the local clocks of the slave nodes. This procedure con-
strains the initial offset variance across trials and nodes to
within 60 s ± 1 ms (i.e., spread < 0.002%), which leads to
consistent synchronization behavior and convergence times

9Each Ethernet cable is no longer than 5 m, with signal propagation in
copper at approximately 5 ns/m [54], resulting in a maximum of 25 ns delay
per link and up to 75 ns total end-to-end link-layer delay.

10Due to physical constraints: for example, our smart power units support
only WiFi, and Raspberry Pi boards have a single Ethernet port.

https://www.ptptrackhound.com
https://www.spirent.com/assets/u/spirent-sentinel
https://www.timebeat.app/
https://www.microchip.com/en-us/product/TimeMonitor
https://docs.ntpsec.org/latest/ntpmon.html
https://github.com/mlichvar/ntpperf

across experiments. Notably, the resulting offset is still large,
representing a worst-case scenario that forces the PTP clients
to perform full synchronization from a highly divergent state.
In cases where clocks start closer together, synchronization
would be correspondingly easier and faster. An added benefit
of the initial sync phase is that it aligns software clock drift
across nodes: Linux’s drift compensation is calibrated during
this phase and remains in effect for the main experiment,
improving the reproducibility of initial conditions. The worker
also collects system metrics and log outputs from various
sources, which are transmitted to the orchestrator’s database
over the general-purpose network.

Finally, the data processing engine runs offline to convert
raw logs into time series, generate aggregated profiles and
summaries, and prepare the data for tabular and graphical
display in the EtherTime web interface11. The dataset can be
interactively queried through Django-based filters.

System clocks on the worker nodes cannot be trusted
for globally timestamping logs, as they may be arbitrarily
adjusted during synchronization and are subject to resets
during fault-tolerance experiments. To maintain consistent
chronological ordering across nodes, EtherTime must be re-
silient to such disruptions. Automatically reconstructing the
global order of events after clock inconsistencies is notoriously
difficult. EtherTime avoids this problem by streaming logs
over the general-purpose network (separate from the Ethernet
links used for clock synchronization) to a central database
that timestamps each message upon arrival using a single,
consistent clock source. This approach ensures a globally
ordered timeline of events across the testbed. Importantly,
the database clock is intentionally left unsynchronized with
external time sources to guarantee monotonicity. Although this
logging mechanism introduces a small latency, on the order
of milliseconds, it is negligible relative to the duration of
each experiment (typically 20+ minutes), especially since each
worker commits logs at one-second intervals. An additional
benefit is robustness: logging via the central database preserves
consistency even during simulated node failures, avoiding the
complexities of recovering from partially written logs had they
been stored locally on each node.

Using EtherTime, we have collected, processed, and an-
alyzed over 13 million log records to date. EtherTime is
designed to be easily extensible to new clock synchronization
protocols and implementations beyond those evaluated in this
study. Adding support for a new vendor typically requires
only three tasks: scripting an installer, defining a configuration
template, and writing a log parser. We have streamlined
deployment of EtherTime on new clusters by minimizing
dependencies on specialized hardware and software. This
allows users to focus on evaluating synchronization accuracy
and reliability on their own platforms, rather than spending
time building experimental infrastructure from scratch. Our
aim is to enable users to assess baseline synchronization
behavior with minimal manual effort, empowering system

11See the Data Analysis section in https://github.com/caps-tum/EtherTime

designers to generate their own measurements, tailored to their
hardware and use case, rather than relying solely on prior
results, which may be outdated, incomplete, or incompatible
with their setups. By leveraging EtherTime, users can avoid
ad hoc evaluation efforts and benefit from a standardized,
reproducible methodology. The tool also helps reduce the risk
of methodological or statistical errors, promotes integration
of best practices, and lowers the barrier to entry for rigorous
experimentation. Our entire study, including advanced exper-
iments involving resource contention and fault tolerance, can
be reproduced on different hardware or implementations with
just a few EtherTime commands.

VI. PROTOCOLS & TESTBED

As a first step, we surveyed available PTP implementa-
tions and found that the number of viable, freely available
options is limited. We excluded the following implementa-
tions from our evaluation: (i) OpenPTP [55] is currently
unmaintained, with its last activity dating back more than a
decade; it has since been commercialized. (ii) Timebeat [56]
depends on heavyweight infrastructure (notably the Elastic-
search/Logstash/Kibana stack), making it unsuitable for em-
bedded deployments. (iii) PPSI [57] suffers from stability is-
sues, including buffer overruns; we have filed a corresponding
bug report [58]. (iv) White Rabbit [18], an open extension
of PTP for sub-nanosecond synchronization, requires highly
specialized hardware, including vendor-specific synchronous
Ethernet switches and NICs with syntonization12 support,
making it impractical for use with commodity embedded sys-
tems. (v) Statime [59], a Rust-based implementation in early
development (alpha stage), was released only after our study
concluded and is therefore not included in our evaluation.

This left us with four suitable options: PTPd, LinuxPTP,
SPTP, and Chrony. (vi) PTPd [60] has seen limited main-
tenance in recent years [61] and lacks modern features such
as hardware timestamping. Despite this, it has inspired several
derivative implementations (including commercial) and contin-
ues to see deployment, as indicated by package trackers [62],
likely due to its simplicity and broad support across non-
Linux UNIX systems. (vii) LinuxPTP [63] is the most widely
deployed open-source PTP solution in Debian. It is designed
for robustness and tight integration with the Linux kernel,
leveraging hardware support and kernel features to enhance
synchronization accuracy. (viii) SPTP [64] is a lightweight,
PTP-inspired protocol developed at Meta to address practical
deployment challenges with standard PTP. It aims to achieve
similar synchronization performance while reducing resource
usage and improving resilience in large-scale datacenter en-
vironments. (ix) Finally, we include Chrony [65], the state-
of-the-art implementation of the NTP protocol. Chrony is the
most feature-rich of the evaluated solutions and, as a general-
purpose clock synchronization protocol, serves as a useful
baseline for comparison against the more specialized PTP-
based implementations.

12Syntonization is a specific form of phase synchronization in which the
frequencies of two clocks are matched, but not their absolute time values.

https://github.com/caps-tum/EtherTime

We initially deployed our hardware testbed using three types
of embedded platforms (Fig. 2): the Raspberry Pi 4 [66],
the Xilinx ZUBoard 1CG [67], and the NVIDIA Jetson TK-
1 [68]. Partway through our study, the Raspberry Pi 5 [69]
became available; we include it as a bonus case to explore the
improvements offered by next-generation hardware.

The Raspberry Pi 5 differs from the Raspberry Pi 4 by of-
fering hardware timestamping support on its network interface
and an integrated battery-powered real-time clock (RTC) [70].
The RTC allows the board to retain accurate time across power
cycles and may offer better long-term stability than chipset
oscillators, which are typically more susceptible to thermal
drift or manufacturing variation. Many embedded SoCs omit
RTCs to reduce cost, instead relying on less stable integrated
oscillators to maintain the system clock.

We also use a cluster of four Xilinx ZUBoard 1CG boards,
which feature dual ARM Cortex-A53 and dual Cortex-R5F
cores. These were adapted to run Debian for software con-
sistency, based on Xilinx’s 5.15 kernel with patched R815X
drivers to support a secondary Ethernet adapter. However,
this kernel version only supported hardware timestamping
on the TX path, not RX, which impaired synchronization
accuracy and rendered SPTP nonfunctional. We resolved this
by upgrading to Xilinx kernel 6.6.10. The NVIDIA Jetson TK-
1 boards, based on 32-bit ARMv7, were painstakingly updated
to Ubuntu 22.04 LTS for compatibility, despite relying on
NVIDIA’s legacy 3.10.40 JetPack kernel. All other platforms
in our testbed run Debian 12.

Our hardware selection spans a decade of commodity em-
bedded systems, with release dates from 2014 to 2024. It
covers both 32- and 64-bit architectures, platforms with and
without hardware timestamping or RTCs, and diverse network
interface vendors. By including Raspberry Pi, Jetson, and
Xilinx boards, we capture performance data across the most
widely used and best-selling single-board computer (SBC)
families for general-purpose, AI/GPU-focused, and dataflow-
oriented applications [71].

VII. BASELINE EVALUATION

The baseline evaluation for each vendor serves as a refer-
ence point for analyzing modified configurations. We use the
default PTP/NTP profiles wherever applicable. For PTP, we
retain all three standard frequency settings: synchronization
messages from master to slave at 1 Hz, path delay mea-
surements at 1 Hz, and master discovery announcements at
0.5 Hz. Chrony is similarly configured using its default NTP
parameters. Increasing these frequencies does not significantly
improve synchronization accuracy; in fact, it may degrade
software-based measurement stability. For example, on the R-
Pi 4, LinuxPTP achieves its best synchronization performance
at sampling rates ≤ 2Hz. At a much higher rate of 128 Hz,
both the median and P95 clock offsets degrade by 7× and
109×, respectively. This is likely due to increased queuing
delays and jitter at higher packet rates. While these figures
may not directly imply worse synchronization accuracy (as this

ultimately depends on each implementation’s offset compen-
sation strategy and would require hardware-level validation),
they show that EtherTime cannot estimate high-quality offsets
when the sampling frequency is set excessively high.

To ensure predictable synchronization behavior, we config-
ure PTP’s second stage (S2) to deterministically select the
designated master node. We achieve this by assigning a fixed
value to the grandmasterPriority1 parameter, a config-
urable field used by S2’s Best Master Clock Algorithm [13] to
influence master clock election. Doing so eliminates a potential
source of variability in our measurements that would otherwise
arise from dynamic master selection. Static master assignment
is also common in practice, as it allows operators to retain
control over the synchronization topology. Our configuration
mirrors this setup to ensure consistency and repeatability.

Separating converging and converged stages. For all
experiments, we collect approximately 1200 samples over
20-minute runs, repeating each setup multiple times for ro-
bustness. Our primary interest lies in analyzing clock offset
statistics after synchronization has stabilized, i.e., during the
stable stage (S6). However, unlike systems such as True-
Time [4], PTP offers no standardized mechanism for detecting
this convergence across different implementations.

While PTP defines a set of endpoint states (LISTENING,
MASTER, PASSIVE, UNCALIBRATED, SLAVE), these do not
reflect synchronization quality; e.g., a client in the SLAVE
state may still have a millisecond-scale offset that is gradually
being corrected through clock slewing, eventually settling into
a microsecond-scale equilibrium, without ever changing PTP
state. Some implementations, like LinuxPTP, offer internal
servo states (s0: initial, s1: intermediate, s2: locked and syn-
chronized) providing finer-grained insight into synchronization
progress. However, these are often not exposed externally,
are non-standardized, and may vary even within the same
implementation depending on the servo configuration.

EtherTime uses a simple and consistent method that works
across all PTP implementations, regardless of vendor or inter-
nal design, relying solely on the sequence of observed offset
values. During convergence (stages S4 and S5), the offset
consistently shifts in one direction (either ahead or behind the
master clock) and typically decreases in magnitude. As the
system nears its optimal precision, offsets may overshoot and
reverse direction, though they generally continue to shrink. In
the stable state (S6), these offset estimates oscillate around
a small range without sustained directional drift, indicating
minor corrections rather than active convergence. The number
of direction changes in the offset estimate is thus an indicator:
under normal conditions, convergence rarely involves more
than a few direction changes. We define convergence as having
occurred after five such reversals (configurable if needed).
This approach reliably distinguishes the converging phase
(characterized by large corrections) from the stable phase
(minor adjustments only). As shown in Fig. 3, this heuristic
aligns well with visual inspection. We have manually verified
hundreds of traces without encountering anomalies.

Beyond separating the convergence and stable phases, this

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00
Timestamp

0 s

20 µs

40 µs

60 µs

80 µs

100 µs

120 µs

Cl
oc

k
O

ffs
et

 (A
bs

ol
ut

e)
Baseline Timeseries (PTPd, with Convergence)

74 µs ±6 µs

Median: 9 µs

P95: 40 µs

Converging Converged

Clock Difference

Path Delay

Fig. 3. A sample run of PTPd in its default configuration (left: scattered raw
signal and denoised moving average, right: kernel density estimates) on the
R-Pi 4. We use offset direction changes to predict when PTP transitions to
the stable stage S6 (denoted using a dashed line). The clock offset is much
lower than the path delay. This is true for all vendors across all platforms and
shows the sophistication of the path delay compensation techniques used by
clock synchronization protocols compared to a naive approach.

indicator allows us to measure time to convergence, i.e., the
duration a node should wait after connecting to a master before
serving time to applications. PTPd is by far the slowest ven-
dor to establish stable synchronization across all boards. For
example, correcting a 28 ms offset via PTPd requires roughly
13 minutes of clock slewing, whereas other implementations
handle larger offsets in under a minute.

Metrics. As shown in Fig. 3, the observed clock offset
estimates are inherently noisy, making it difficult to discern
the true clock offset and its fluctuations. To address this, we
use the median of the observed offset values as a representative
estimate of the true offset. Wherever possible, we also include
95th percentile error bars or bands to capture the range of
higher deviation, offering a more conservative view of syn-
chronization accuracy. The path delay is computed by the PTP
implementation and, in the absence of hardware timestamping,
reflects delays across the full software stack.

Vendor- and platform-specific baselines. Fig. 4 illustrates
the clock synchronization performance of all four vendors
across the four hardware platforms, with detailed values listed
in Table I. PTPd stands out as a clear outlier, consistently
exhibiting the worst synchronization offset across all plat-
forms. In the best case, PTPd shows a median clock offset
that is 88% worse than the best-performing vendor on TK-1
boards (though all baselines perform relatively poorly on this
platform). In the worst case, PTPd’s median offset is 860%
worse than the best-performing vendor on Xilinx boards.

While the differences among the remaining vendors are less
pronounced, Chrony, SPTP, and LinuxPTP achieve the best
synchronization accuracy on the Raspberry Pi, Xilinx, and
TK-1 platforms, respectively. It is particularly noteworthy that
Chrony, an NTP client, can match, or even outperform, all
evaluated PTP clients, despite PTP being designed specifically
for high-precision synchronization. Chrony represents the state
of the art in NTP implementations. It benefits from hardware
timestamping support comparable to that used by PTP clients

R-Pi 4 R-Pi 5 Xilinx TK-1
0 s

10 µs

20 µs

30 µs

40 µs

M
ed

ia
n

Cl
oc

k
O

ffs
et

Baseline Performance by Vendor and Cluster

R-Pi 5 Xilinx TK-1
0 s

1 µs

2 µs

3 µs

4 µs

5 µs

(Magnified)

PTPd
LinuxPTP

SPTP
Chrony

Fig. 4. Median baseline performance for all vendors, across all four platforms
(left) and a magnified view for R-Pi 5, Xilinx, and Jetson TK-1 platforms
(right). Error bars denote P5 and P95 percentile values, respectively.

TABLE I
VENDOR- AND PLATFORM-SPECIFIC BASELINE CLOCK OFFSETS

System + Vendor P50 P95 P99 Max
R-Pi 4 PTPd 5.9 41.4 64.0 153.7 µs

LinuxPTP 4.7 14.6 19.5 70.9 µs
SPTP 2.4 7.9 11.6 25.8 µs

Chrony 1.2 4.6 6.9 157.8 µs
R-Pi 5 PTPd 1.1 3.7 4.9 13.2 µs

LinuxPTP 0.3 0.9 1.1 28.2 µs
SPTP 0.2 0.6 0.8 8.9 µs

Chrony 0.2 0.5 6.1 9.2 µs
Xilinx PTPd 2.8 10.6 15.2 28.0 µs

LinuxPTP 0.4 1.1 1.4 17.8 µs
SPTP 0.3 0.9 1.1 1.7 µs

Chrony 0.4 1.1 1.6 10.8 µs
TK-1 PTPd 5.3 24.4 37.3 232.2 µs

LinuxPTP 2.8 13.2 20.3 141.8 µs
SPTP* - - - - µs
Chrony 3.1 18.2 30.8 167.9 µs

*SPTP could not run on TK-1 even after patching it for 32-bit compatibility,
since the Tegra 3.10 kernel has no support for socket options needed by SPTP.

and offers advanced features such as falseticker detection [72].
Although PTP is theoretically capable of surpassing NTP in
precision, especially when used with transparent and boundary
clocks that compensate for queuing delays in PTP-aware
network hardware, such hardware remains impractical for
embedded deployments. Specialized PTP-compatible switches
typically carry four-figure price tags, making them unsuitable
for cost-sensitive environments. To reflect realistic industrial
and embedded use cases, we restrict our evaluation to standard
Ethernet switches, which are far more commonly deployed.

Among all factors, the choice of hardware has the most
pronounced impact on synchronization quality. Both R-Pi 5
and Xilinx boards support hardware timestamping, whereas R-
Pi 4 and TK-1 boards do not. As a result, R-Pi 5 shows marked
improvements over R-Pi 4, with median offset reductions
ranging from 5× for PTPd to 14× for LinuxPTP. Similarly,
the Xilinx board achieves better synchronization than the TK-
1 board, improving from 2× for PTPd to 8× for Chrony.
Interestingly, PTPd benefits from running on newer hardware,
despite lacking hardware timestamping support, highlighting
that hardware timestamps are not the sole determinant of syn-
chronization performance. They help reduce timing variability
but are not a complete solution on their own.

0 s 5 m 10 m 15 m
Timestamp

0 s

30 µs

60 µs

90 µs

Cl
oc

k
O

ffs
et

Best Run

0 s 0 s 5 m 10 m 15 m
Timestamp

Worst RunPTPd Baseline

5 µs

22 µs 24 µs
(5x)

66 µs
(3x)

Median

P95

Same environment
3-5x better performance

Signi�cant accuracy
variability

Fig. 5. Timeseries profiles for the best run and the worst run of PTPd on R-Pi
4 under identical conditions, showing significant differences in noise levels.

Hardware timestamping also reduces synchronization vari-
ance. Without it, the difference between the median and P95

offset ranges from 3× for LinuxPTP on R-Pi 4, to 7× for PTPd
on R-Pi 4. This can be seen in the relatively tall error bars in
Fig. 4 (left) for R-Pi 4 and TK-1 boards. With hardware times-
tamping, the difference drops to 3.7× for PTPd on Xilinx and
2.7× for LinuxPTP on R-Pi 5. Thus, hardware timestamping
not only improves average synchronization accuracy, but also
significantly reduces the magnitude of outliers.

Reproducibility. Despite careful setup, there is consid-
erable noise within each run. The maximum observed clock
offset typically ranges from only 2× of the median for SPTP
on Xilinx to 34× for Chrony on R-Pi 4. Discrepancies can
also occur between runs, even when the configuration remains
unchanged. Fig. 5 illustrates this effect across multiple runs for
different vendors on the R-Pi 4 platform. Among all vendors,
PTPd shows the highest variance in both median and P95 offset
values. Restarting the PTPd client can cause the median offset
to jump from 5 µs to 24 µs, a 400% increase, that persists
across the entire 20-minute run. In contrast, LinuxPTP yields
more stable results: its median offset ranges only from 4 µs
to 6 µs (42% difference). Chrony produces the most consistent
results with a run-to-run variation of just 0.2 µs (12%).

We employ several mitigation strategies to mitigate noise.
To reduce the impact of uncontrolled environmental factors
(e.g., room temperature), we interleave measurements across
PTP implementations, i.e., PTPd, LinuxPTP, SPTP, Chrony,
PTPd, and so on, rather than executing all repetitions of one
implementation before moving to the next. This ensures that
any drift in external conditions affects all implementations
equally, helping to avoid systematic bias. Each baseline test
is repeated at least 15 times per vendor and platform, totaling
approximately 40 hours of runtime and ∼144000 samples per
benchmark. Between runs, the entire cluster is rebooted to
eliminate residual state and ensure independence of observa-
tions. Other than that, the setup remains untouched, so any
variation stems solely from internal protocol behavior. We also
apply filters to discard runs with too many missing values,
insufficient sample counts, or failures in basic consistency
checks. The resulting baseline data is highly complete: fewer
than 0.1% of samples are missing for any vendor or platform.

0% 20% 40% 60% 80% 100%
Network Load

100 ns

1 µs

10 µs

100 µs

1 ms

10 ms

M
ea

n
Cl

oc
k O

ffs
et

Synchronization Quality with Unisolated Network Contention

PTPd LinuxPTP SPTP Chrony

>1
00

0x
 d

i�
er

en
ce

Trend reverses at only 10% load

Fig. 6. Mean (P5, P95) clock synchronization accuracy with varying network
interference on R-Pi 4. Unlike other graphs in the paper, we show mean values
rather than median to highlight the significance of increasing outliers.

VIII. NETWORK CONTENTION

Network contention can arise when applications generate
high volumes of traffic, such as video streams in surveillance
systems, model updates in distributed AI, or high-frequency
sensor data in industrial monitoring. In embedded systems
connected via Ethernet, this kind of sustained or bursty load
is common and can lead to queuing delays and jitter. Clock
synchronization protocols must therefore remain robust and
maintain accuracy, even under such network pressure.

We use iPerf [73] to introduce controlled network load,
varying it between 0% and 100% of the nominal Gigabit
Ethernet bandwidth (1000 Mbps). The master board runs the
iPerf server, while the client board connects to it in bidirec-
tional mode, transmitting and receiving traffic at the target
bandwidth.13 Fig. 6 shows the mean clock offset observed
on R-Pi 4. Since the default configurations of all PTP im-
plementations lack mechanisms to prioritize synchronization
traffic, synchronization accuracy deteriorates with increasing
network load. PTPd exhibits the smallest degradation: its mean
clock offset increases by only 4.7×, from 11 µs to 51 µs at
100% load. In contrast, Chrony shows the worst degradation,
with its mean clock offset increasing by 800×, from 1.7 µs to
1360 µs. Both Chrony and SPTP exhibit large P95 values under
load (Fig. 6), which impacts their average offset even at just
10% load. We attribute this to their use of unicast message
exchanges, in contrast to PTPd and LinuxPTP, which rely
more on multicast. (Chrony’s multicast support is disabled
by default.) Interestingly, PTPd, despite underperforming in
baseline conditions, is the most resilient to network contention,
maintaining significantly smaller clock offsets under heavy
load (above 30%) compared to the others.

Network load impacts clock synchronization accuracy pri-
marily because synchronization depends on both the mag-
nitude and variability of path delay, both of which tend to

13Due to inconsistencies in how different versions of iPerf2 handle
certain flags, and contradictory information in its documentation [73], it was
initially unclear whether iPerf was generating TCP or UDP traffic in our
experiments. Because this distinction affects traffic characteristics, we audited
our open-source dataset (which includes all logs, including iPerf outputs) and
confirmed that all traffic generated during our measurements was TCP.

10 µs 100 µs 1 ms 10 ms
Path Delay

100 ns

1 µs

10 µs

100 µs

1 ms

10 ms

Pa
th

 D
el

ay
 S

td
.

Clock Difference for Path Delay and Path Delay Variation

Vendors
PTPd
PTP4L
SPTP
Chrony

100 ns

1 µs

10 µs

100 µs

1 ms

10 ms

M
ed

ia
n

Cl
oc

k
Of

fs
et

Fig. 7. Synchronization accuracy (shown on a color scale) with respect to
path delay (x axis) and its variance (y axis), for all four vendors across all
four platforms and under various tested circumstances.

increase under load due to longer queuing times in hardware
and software. To examine the relationship between increased
path delay and degraded synchronization, we aggregate all
20-minute measurement profiles and analyze them based on
path delay and path delay variation.14 The results in Fig. 7
show that high path delay and high path delay variation
combined correlate with poor synchronization accuracy, but
neither metric alone is a sufficient predictor. Indeed, we
observe some instances of good synchronization despite high
path delay or high delay variation alone. However, the reverse
is not necessarily true: poor synchronization does not always
coincide with elevated path delay or variation. This is visible
in the presence of a few poorly synchronized (red) data points
within a cluster of better-performing (blue) points. Such cases
arise from other factors independent of path delay, such as
fault reconvergence, which we explore further in §X.

Two principal strategies exist to mitigate the impact of
network interference on clock synchronization: prioritizing
synchronization traffic in software or hardware, and physically
isolating it by assigning it a dedicated network interface. While
physical isolation may seem costly, especially for embedded
systems, it is already common in industrial and datacenter
environments, where a secondary management interface is
often used to separate control traffic from application data.
To emulate this setup on Raspberry Pi boards, we configure
the routing table so that only clock synchronization traffic
is routed through the dedicated (isolated) interface, while all
other traffic uses a general-purpose interface. Fig. 8 illustrates
this comparison, showing the unisolated default setup on the
left and the baseline setup with no load on the right. Physical
isolation completely mitigates the negative impact of network
load on synchronization accuracy. Although cross-talk through
the software network stack is theoretically possible, its effect
appears negligible in practice.

14Under high network load, synchronization sometimes fails entirely due
to repeated transmission timeouts. For instance, 26% of 20-minute runs with
100% load on R-Pi 4 failed to synchronize altogether; mostly with LinuxPTP,
while Chrony did not fail at all. On R-Pi 5, LinuxPTP was consistently
unable to synchronize across all trials. These failure cases are difficult to
include in statistical analysis but are critical to highlight: complete loss of
synchronization, especially without detection, is the worst-case outcome.

100 ns

1 µs

10 µs

100 µs

1 ms

10 ms

M
ed

ia
n

Cl
oc

k
O

ffs
et

U U U UP P P PI I I IB B B B

Isolation Mechanisms at 100% Network Load
PTPd
LinuxPTP

SPTP
Chrony

U: Unprioritized P: Prioritized I: Isolated B: Baseline Means

Fig. 8. Different possibilities of isolating network load, versus the baseline
with no load (medians, with means for comparison of skew).

Traffic prioritization, however, does not provide the same
level of isolation as physical separation. It is implemented
using the Differentiated Services Code Point (DSCP) mech-
anism [74], which requires consistent support across all net-
working components, both software and hardware, along the
communication path. In our case, although both the switch
and operating system report DSCP support, this alone was
insufficient for complete traffic segregation. For example,
DSCP prioritization improved the median clock offset for
SPTP by up to 10× compared to the unprioritized case, yet
the average offset remained high due to persistent outliers.
An anomaly was observed with LinuxPTP, where the median
clock offset worsened (i.e., increased) by a factor of 45× with
DSCP enabled, even though P5 and P95 remained within a
3× deviation from their unprioritized baselines. We attribute
this discrepancy to differences in queuing behavior across
platforms. On R-Pi 4, Raspbian’s default queuing policies are
not tuned for PTP.15 We therefore caution that DSCP-based
software prioritization must be explicitly tuned and thoroughly
validated—merely assigning a DSCP value and trusting the
OS may have counterproductive effects.

IX. OTHER RESOURCE CONTENTION

Embedded systems often operate with limited compute
resources. With edge ML workloads becoming increasingly
common, applications frequently stress processing capabilities,
placing additional pressure on the scheduler, pressure that
clock synchronization must withstand. Our data shows that
contention for resources other than the network rarely causes
synchronization degradation of comparable severity.

CPU contention, for example, results in only modest degra-
dation. On R-Pi 4, the worst observed median offset increase
under CPU load is just 22% and 37% on P95 (Chrony).
This limited interference stems from the fact that PTP clients

15Linux’s queuing configuration varies by platform. On R-Pi 4, five
hardware queues are available for transmission and two for reception, both
with uniform priority mappings. However, software prioritization is enforced
only within individual queues, not across them, leading to unpredictable
packet scheduling and degraded performance. In contrast, R-Pi 5 uses a single
hardware queue, making prioritization fully dependent on software, which
leads to more consistent queuing behavior.

consume little processing time and are promptly scheduled by
Linux’s default scheduler, even under heavy load. As a result,
real-time schedulers like SCHED_FIFO or SCHED_RR are not
strictly necessary for robust PTP performance.

Interestingly, light CPU load can even improve synchro-
nization. Reduced power-saving behavior under moderate load
lowers scheduling jitter, leading to better performance. For
instance, PTPd’s median and P95 show improvements of 17%
and 53%, respectively, on R-Pi 4. On R-Pi 5, Chrony,
LinuxPTP, and SPTP remain mostly unaffected by CPU load
(with a worst-case increase of only 17%). In contrast, PTPd
shows noticeable degradation of up to 71%, still much less
than under network contention. This suggests that tuning the
Linux performance governor may improve synchronization,
although at the cost of increased power consumption.

We further stress-tested clients using Stress-NG [75] to
simulate cache and memory contention from applications such
as video/image processing, AI, and communications. As clock
synchronization is not data-intensive, we expect lower impact.
Cache contention caused moderate degradation in some cases
(up to 8.9× with PTPd on R-Pi 5), while memory bandwidth
contention had a similar impact (also up to 9×, with the
same vendor/platform). Finally, stressing time-related kernel
resources, such as timers, alarms, or the use of cyclic tasks
with SCHED_DEADLINE, had negligible effect.

X. FAULT TOLERANCE

We examine faults in both the PTP software and the under-
lying node hardware. Faults on the master node are particularly
critical, as they can affect the entire synchronization domain,
whereas faults on a slave are typically contained to a single
node. To account for high-reliability deployments, we also
evaluate scenarios in which a backup client (failover) assumes
the role of master. Due to space constraints, we omit network
fault injection results, they are available in our dataset.16

Software fault in slave. We emulate software faults by
sending a SIGKILL signal to forcefully terminate the PTP
client on the slave. In practice, such faults may result from
bugs, out-of-memory conditions, or transient hardware issues
such as bit-flips [25]. While the client is down, the system
clock continues to drift, at a rate determined by the underlying
hardware clock drift, offset by the last correction applied
during synchronization. If synchronization was stable before
the crash, the resulting drift is expected to be minimal. In
the worst-case scenario, such as during the early convergence
phase, PTP may apply maximum-rate clock slew, typically up
to 0.05%. This can result in software-induced drift of 500 µs
per second of downtime, or 30 ms per minute, on top of any
hardware drift. We aim to empirically assess the actual drift
during such faults when the clock was previously stable.

We find that the maximum observed offset after a 1-minute
software fault across 10 trials is 60 µs for Chrony (Fig. 9, top).

16Ironically, a full network outage is often easier for PTP to handle than
scenarios involving heavy congestion or partial node failure. Since no state is
lost, servos remain in holdover mode, and PTP can simply reconverge on the
common time once the network reconnects.

Synchronization Quality during Software Fault

0 s

20 µs

40 µs

60 µs

Fa
ul

ty
 P

ee
r

Cl
oc

k
O

ffs
et

-2m 0m 2m
0 s

20 µs

40 µs

60 µs

Fa
ul

tle
ss

 P
ee

r
Cl

oc
k

O
ffs

et

-2m 0m 2m -2m 0m 2m -2m 0m 2m -2m 0m 2m -2m 0m 2m

SPTP Chrony

PTPd PTP4L SPTP Chrony

Xilinx R-Pi 4

*SPTP: Failed packet timestamp: no TX timestamp found after 500 ms. Chrony: Can’t synchronize: no selectable sources.

Fig. 9. Software crash induced 1-minute fault (dotted lines) on Xilinx (left),
with a faulty slave (top) and a second control slave (bottom). After the fault,
an increased offset can be observed as the clocks are resynchronized, but
there is little service disruption. R-Pi 4 (right, for comparison) has issues on
the control slave: for SPTP and Chrony, the second slave experiences large
clock steps or entire service outage. Since clock drift occurs randomly, we
superimpose 10 trials for each vendor to illustrate variability.

This is approximately 40× worse than the vendor’s median
baseline performance, but well below the theoretical bound.
Interestingly, chance plays a role: in some trials, the observed
offset remained low despite the full minute of downtime, e.g.,
just 16 µs in the best case for SPTP. In all cases, all vendors
rapidly reconverge on the clock signal within a few seconds
of restarting, often aided by quirks in the PTP protocol.17

In high-reliability deployments, faults on one slave must
not propagate or affect the synchronization quality of other
slaves. For example, in a smart access control system, repeated
failures of a specific key to authenticate should not impair the
ability of other keys to unlock the secured data. To evaluate
this, we connect a second control node to the same master
(Fig. 9, bottom). On Xilinx nodes, this setup poses no issue:
the faulty slave resynchronizes correctly, and the control slave
remains unaffected. However, the R-Pi 4 exhibits problematic
behavior with both SPTP and Chrony. For SPTP, we observe
temporary disconnects caused by repeated errors in multiple
trials (see the note* under Fig. 9). Chrony shows outages at
exactly the same times. reproducible to within one second.
The visual differences arise because SPTP converges more
slowly, placing most of its trajectory out of view. Therefore,
we cannot assume that a node failure is always contained; it
may impact others in the synchronization domain.18

Hardware fault in slave. A hardware fault on the slave
is more disruptive than a software fault: not only is the

17PTP slaves request synchronization signal leases from the master with
predetermined expiration times. When a slave crashes, the master continues
sending synchronization messages to the now-defunct peer (a behavior known
as abandoned sync [33]). Once the slave restarts and obtains a new lease,
this overlap in message flow accelerates resynchronization by increasing the
frequency of received sync messages.

18A notable caveat with PTPd is that multiple software faults, even if spaced
apart, can lead to compounding failures. Specifically, the third PTPd fault
consistently causes the network interface to fail, regardless of platform or
trigger method. Restarting the network or reloading the NIC driver does not
resolve the issue; only a full system reboot restores functionality. This can
disrupt all network-dependent applications, highlighting the need for caution
when deploying PTPd or any derivatives that may share this bug.

Synchronization Quality during Hardware Fault

-2m 0m 2m
1 ns

1 μs

1 ms

1 s
1 m
1 h

Cl
oc

k
O

ffs
et

 Offset: 12 m →

-2m 0m 2m

Offset: 1 s →

R-Pi 4 R-Pi 5

PTPd
LinuxPTP
SPTP
Chrony

Fig. 10. A hardware fault on the slave of the R-Pi 4 cluster (left) and the
R-Pi 5 cluster (right). Both slaves need to fully resynchronize after rebooting,
but the R-Pi 5 has an advantage due to its hardware clock.

clock synchronization state lost, but also the kernel state,
including the current system time and clock drift. As a
result, clients must fully reconverge following such a fault,
using the full step-and-slew approach as in the baseline. We
simulate hardware faults using programmable PDUs, which
emulate complete power loss. Howerver, since Xilinx and TK-
1 platforms cannot automatically power on after shutdown,
our evaluation of hardware faults is restricted primarily to the
Raspberry Pi platform. While hardware faults in production
can result from various component failures, many of them
effectively present the same symptoms as a full power loss.

Because the R-Pi 4 (Fig. 10, left) includes only a times-
tamp counter (TSC) and lacks a RTC, the system time after
reboot defaults to either the last time persisted to disk (if
fake-hwclock [76] is active) or a fallback value such
as the UNIX epoch. On Raspbian (Debian-based), where
fake-hwclock is enabled by default, we observe a tempo-
rary deviation of 12 min (on SPTP). This large offset is initially
corrected via a clock step (which breaks the continuity of
time), followed by a reconvergence phase lasting several min-
utes until previous accuracy levels are restored. In contrast, the
R-Pi 5 (Fig. 10, right) is equipped with a RTC, which preserves
the system time even while powered off. While RTCs generally
operate at lower resolutions (commonly 32,768 Hz) compared
to the internal TSC, they still provide stability in the parts-
per-million range [77]. As a result, the maximum observed
offset is only 1290 ms (on LinuxPTP), which is approximately
3 orders of magnitude smaller. This level of deviation can
theoretically be corrected via maximum clock slew without
breaking monotonicity or continuity within 33 min. Only PTPd
avoids the initial clock step (as per its default profile), since the
calibration offset remains below one second, choosing stability
at the cost of slower reconvergence. A simple RTC can thus
effectively mitigate the impact of hardware faults. However,
in deployments where an RTC is not feasible (e.g., due to
cost), we recommend introducing a delay before relaunching
applications to allow sufficient time for resynchronization.

Hardware fault in master. A failure on the master in-
evitably leads to inconsistencies in the announced time, par-
ticularly problematic in embedded scenarios where no external
clock source is available to serve as ground truth. On the R-
Pi 4 (Fig. 11, center left), we observe that when the master

restarts with a different reference time, a large offset re-
emerges between the master and the slaves, resembling the
behavior seen during slave-side faults (Fig. 11, left). This
issue, which manifests as indefinite clock slew, can be ad-
dressed by reconfiguring the slave to permit clock steps after
startup (disabled by default for safety). However, this comes
with trade-offs: allowing large clock corrections risks breaking
both monotonic and continuous time flow, and the system
must be thoroughly tested for resilience. Our experiments
with stress-test tools and real applications show that many
applications misbehave during a clock step, even when using
Linux’s monotonic clock, highlighting that resilience cannot
be assumed based solely on the clock API in use. As noted
earlier, the issue is better mitigated by RTCs, which preserve
system time during power loss (e.g., R-Pi 5). Importantly,
the RTC does not need to be of particularly high quality
to maintain sub-second accuracy over short downtimes. If
constraints permit installing an external clock on only one
node, it is most beneficial to equip the master, as it can
distribute its stable time base to all connected slaves.

Hardware fault in master, with failover. For both Linux-
PTP and Chrony, the designated failover master can assume
control rapidly in the event of a master failure, resulting in
virtually no disruption to the timing service (Fig. 12). In
contrast, PTPd is unable to complete the failover successfully,
instead reporting an error: No active masters present, resetting
port. However, even with successful failover in LinuxPTP and
Chrony, the underlying issue persists: if the original master
restarts with an incorrect reference time, it may disseminate
this erroneous time, which other clients will accept, leading
to offset spikes and clock corrections of familiar magnitudes:
71 min on the R-Pi 4 and 530 ms on the R-Pi 5. We also ob-
serve that LinuxPTP is more prone to reconvergence timeouts
in these scenarios compared to previous tests. Because stage
S2 (BMCA) selects the grandmaster deterministically (unless
explicit changes are made to the configuration to alter priority),
the restarted original master may retake control, even if its
clock is incorrect. In such cases, the failover master is unable
to propagate the correct time to the newly rejoined master. To
address this, the failed master should either be permanently
disabled, reconfigured with a lower priority (demoting it to
a slave), or equipped with an external clock source to ensure
that a power fault does not alter its reference time. Finally, we
note that changes in network topology (e.g., a master rejoining
the network) are not always detected immediately. All three
PTP implementations may exhibit delayed reactions to system
state changes, such as when the original master attempts to
take back control from the failover master.

XI. RESOURCE CONSUMPTION

The resource footprint of clock synchronization should be
kept minimal, ideally to the point of being negligible. For
instance, a battery-powered sensor device collecting health
data may become ineffective if its ability to store, process, or
transmit data, or to operate over extended periods, is impaired
due to PTP consuming excessive memory, CPU, network

0 m 2 m T/O
1 μs

1 ms

1 s
1 m
1 h

M
ax

im
um

 O
ffs

et

0 m 2 m T/O

Hardware Fault Types Slave

0 m 2 m T/O
1 μs

1 ms

1 s
1 m
1 h

0 m 2 m T/O

Master

0 m 2 m T/O
1 μs

1 ms

1 s
1 m
1 h

0 m 2 m T/O

Failover PTPd LinuxPTP SPTP Chrony

R-Pi 4 R-Pi 4 R-Pi 4 R-Pi 5R-Pi 5R-Pi 5

Fig. 11. The maximum clock offset observed and the time taken to reconverge to normal accuracy for different failures; timeout (T/O) is 4 minutes. Due to
no RTC, Raspberry Pi 4 observes high offsets sometimes indefinitely. Raspberry Pi 5 has better resilience, but still slow reconvergence.

Synchronization Quality with Failover Master

Master Failover Master
1 ns

1 μs

1 ms

1 s
1 m
1 h

Cl
oc

k
O

ffs
et

Master Failover Master

PTPd
LinuxPTP
SPTP
Chrony

R-Pi 5
R-Pi 4

Fig. 12. Fault tolerance with a failover master. While the failover master
works almost seamlessly (except for PTPd), problems arise when the original
master eventually reboots and starts announcing the wrong time. We exclude
SPTP from this evaluation, as masters and slaves run different binaries and
dynamically switching roles is unsupported.

bandwidth, or power. In fact, SPTP was specifically designed
with the goal of reducing resource consumption [33].

On low-capability devices, ROM/flash space is typically
constrained, making binary footprint a critical concern. To
evaluate it, we strip packages of documentation and omit
dependencies that are likely already present (e.g., lib-c), but
include all other required dependencies in our measurements.
PTPd and LinuxPTP are suitable for microcontroller-class
systems, with total sizes (executables + data + dependencies)
of 840 KB and 970 KB, respectively, whereas SPTP (21 MB)
and Chrony (12 MB) are more than an order of magnitude
larger19. Closely related is memory usage, which also limits
which boards can support a given PTP implementation. Linux-
PTP uses approximately 250–400 KB, Chrony 800 KB–1 MB,
and PTPd around 1 MB in unique and resident set sizes, all
of which fit within a typical ∼2–4 MB memory budget. In
contrast, SPTP demands significantly more memory, starting at
8-10 MB for the master and 15-16 MB for the slave. Moreover,
SPTP’s memory usage grows considerably faster than the
others, increasing by roughly 240 KB for each additional slave.
Notably, SPTP allocates large amounts of virtual memory—
3 GB for the master and 1 GB for the slave—exceeding the
addressable space of 16-bit platforms and rendering it unsuit-
able for deployment on microcontrollers without large virtual
memory support or overcommit capabilities. Given these ROM
and RAM requirements, the more lightweight implementations
(LinuxPTP, PTPd, and to some extent Chrony) are viable

19SPTP’s footprint can be reduced by 40% if only the master or slave
executable is deployed. Chrony’s size is also significantly reduced if core
dependencies, such as iproute2, libgnutls30, and tzdata (totaling roughly
10 MB), are already available on the system.

Synchronization Scalability

2 12Nodes
0%

20%

40%

60%

80%

100%

Sa
m

pl
es

 C
ol

le
ct

ed

Signal Presence

Slaves partially
losing connection
SPTP + Chrony

2 12Nodes

1 µs

10 µs

100 µs

1 ms

10 ms

Cl
oc

k
D

iff
er

en
ce

95-th Percentile

2 12Nodes

1 µs

10 µs

Cl
oc

k
D

iff
er

en
ce

Median
Corresponding

accuracy loss

PTPd LinuxPTP SPTP Chrony

Fig. 13. Synchronization quality for increasing numbers of nodes, with slave
synchronization percentages (left), clock difference median (center) and P95

(right) averaged across nodes (error band: best/worst node’s value). As the
number of nodes increases, some slaves consistently lose the synchronization
signal, noticeably diminishing accuracy.

candidates for deployment on 16 MB flash controllers such
as the STM32MP1 or NXP RT1052. However, sufficient
headroom must be reserved for the main application.

Power consumption is a concern for mobile or battery-
powered deployments. Using consumed CPU time as a proxy
for energy usage, we observe that LinuxPTP and PTPd require
the least compute, while Chrony uses 11%–180% more. SPTP
exhibits the highest CPU usage, consuming between 140%
and 390% times more CPU than LinuxPTP or PTPd. This
increase in compute correlates with higher thermal output: the
master node runs on average 1.4 ◦C hotter, based on onboard
temperature sensors, indicative of greater power draw.

Network bandwidth is another concern, particularly in low-
throughput or cost-sensitive environments. While PTP is often
advertised as having negligible bandwidth usage [78], our
measurements show that, although the differences are modest,
SPTP still generates more traffic than other implementations,
averaging approximately 1.1 MB and 9 K packets per hour per
client. Chrony is the most efficient in terms of network usage,
but the advantage over LinuxPTP and PTPd, which are nearly
identical due to implementing the same protocol, is small and
unlikely to have significant practical impact.

XII. SCALABILITY

To evaluate scalability, we incrementally increase the num-
ber of nodes (Fig. 13), scaling heterogeneously from two nodes
up to the full cluster. Nodes are added in order of decreasing
capability: the R-Pi 5 acts as the master, while slaves are added
in the following order: R-Pi 5, Xilinx, R-Pi 4, and TK-1.

With each additional node, the median clock offset in-
creases, a trend most pronounced with Chrony. Notably,
the first TK-1 board added experiences significantly worse
synchronization than the second, with a degradation factor
of approximately 4×. One R-Pi 4 board also frequently
disconnects, showing a drop in signal presence to roughly
50%, a problem not observed on the other boards. Despite
these issues, boards using software timestamping still benefit
from the R-Pi 5 master’s hardware timestamping, particularly
the R-Pi 4 boards (n ∈ [8, 10]), which achieve synchronization
performance substantially better than the baseline.

A distinct spike in offset is observed for SPTP at n = 10,
driven by incompatibility with the TK-1 boards. The root
cause appears to be the same R-Pi 4 node showing anomalous
behavior under Chrony, accompanied by a similar drop in
signal presence. Log analysis reveals timestamping timeouts,
suggesting that capacity limits may be emerging. However, this
board consistently performs worse than other R-Pi 4 boards
despite identical software configuration. Such discrepancies in
supposedly identical hardware can be attributed to manufac-
turing variances or aging effects [79], which are known to
impact synchronization quality and stability, though we can
only speculate that this is the cause here. This anomaly also
results in the worst scalability being observed with Chrony,
whose synchronization quality degrades by a factor of 5000×.

LinuxPTP consumes on-board resources most efficiently,
matches others in network traffic usage, and significantly
outperforms the only other lightweight vendor, PTPd, in
synchronization quality. Despite SPTP’s promise of improved
resource efficiency in datacenter-scale deployments with up
to 100K clients, we find that it requires substantially more
ROM, RAM, and compute resources, making it less suitable
for embedded environments than alternative PTP implemen-
tations. This discrepancy arises from SPTP’s design focus on
server-class systems, with limited consideration for embedded
platforms or legacy hardware, such as the lack of support
for 32-bit architectures and older kernels. Its implementation
in Go introduces further overhead in terms of dependencies,
runtime environment, and memory footprint [80], whereas
traditional C-based implementations, particularly LinuxPTP,
offer a more lightweight, performant, and accurate solution
for resource-constrained deployments.

XIII. LEARNINGS AND CONCLUSION

Choice of vendor. PTPd, while simple and mature, suffers
from serious drawbacks, e.g., it can soft-brick the network
driver and is often an order of magnitude slower in clock
(re-)convergence after faults. SPTP, developed for datacenter
environments, claims resource efficiency but fails to deliver on
embedded hardware. It has limited board support, lacks matu-
rity, and incurs significant ROM, RAM, and compute overhead
due to its Go runtime. This leaves LinuxPTP and Chrony.
Chrony surprisingly matches or outperforms LinuxPTP in
synchronization on 3 of 4 platforms, but its higher ROM/RAM
footprint and occasional connectivity issues under load make
it less suitable for constrained deployments. LinuxPTP, though

efficient, may suffer from misbehaving traffic prioritization
and failover-induced convergence stalls. Both are mature;
suitability depends on deployment specifics.

Guarding against resource contention. Network conges-
tion is the dominant cause of degradation. The ideal mitigation
is physical separation of PTP and application traffic via a
dedicated network—often too costly for embedded setups.
Software prioritization (e.g., DSCP) is a fallback, but not
foolproof: it can reduce synchronization quality and fails to
eliminate outliers. Results depend on DSCP settings, NIC
queues, and hardware behavior, so configurations must be
tested carefully. Default unisolated setups are discouraged.
Other shared resources, like memory bandwidth and CPU
cache, play minor roles in synchronization accuracy.

Resilience against faults. An external time source is more
critical than hardware timestamping. We strongly recommend
using at least a real-time clock as opposed to relying solely
on internal oscillators, ideally on both master and slaves, to
avoid large time drifts after node faults. In isolated environ-
ments, PTP must be configured carefully, as default profiles
may ignore even large time deviations. Failovers alone won’t
correct such divergence.

Conclusion. The main usability challenge lies in the observ-
ability and verifiability of synchronization. While all vendors
support advanced features, correct configuration, especially for
fault tolerance, is left to the user. This is not a common skill
among engineers or IT operators, and defaults are neither
safe nor broadly applicable. Efforts toward plug-and-play
configurations could improve accessibility. Determining when
and where synchronization fails also requires dedicated moni-
toring and testing, an often-missing component in open-source
implementations. EtherTime addresses this gap by automating
testing and monitoring in a cross-platform setup and offering
configuration guidance. We aim to extend it to evaluate PTP
security (still under standardization) and explore hardware
probe integration for even higher measurement fidelity, at the
cost of deployment simplicity. To enable broader adoption,
future implementations should offer guided configuration, re-
silient default behavior, and accessible synchronization state.
Until then, the promise of tightly synchronized distributed
real-time algorithms remains aspirational, limited by current
infrastructure’s fragility and lack of guarantees.

XIV. ACKNOWLEDGEMENTS

This work was supported by NSERC Discovery and RTI
grants. We thank the Visiting International Research Students
program at UBC and Prof. Martin Schulz (TU Munich)
for making it possible for Vincent Bode (PhD student, TU
Munich) to conduct a research internship at UBC. We also
acknowledge the Science Undergraduate Research Experience
program from the UBC Faculty of Science for supporting
William Shen (undergraduate student, UBC Computer Sci-
ence) during his summer internship on this project. Finally, we
thank all our reviewers for their insightful comments. OpenAI
ChatGPT was used to assist with language editing, based on
a complete draft written by the authors.

REFERENCES

[1] R. B. Langley et al. “Introduction to GNSS”. In: Global
Navigation Satellite Systems. 2017.

[2] M. E. Acer et al. “Where the Wild Warnings Are:
Root Causes of Chrome HTTPS Certificate Errors”. In:
SIGSAC 2017.

[3] R. Steinmetz. “Synchronization Properties in Multime-
dia Systems”. In: IEEE Journal on Selected Areas in
Communications 8.3 (1990).

[4] J. C. Corbett et al. “Spanner: Google’s Globally Dis-
tributed Database”. In: ACM TOCS 31.3 (2013).

[5] A. L. Hopkins et al. “FTMP—A Highly Reliable Fault-
tolerant Multiprocess for Aircraft”. In: IEEE 66.10
(1978).

[6] A. Gujarati et al. “Real-time Replica Consistency over
Ethernet with Reliability Bounds”. In: RTAS 2020.

[7] A. Gujarati et al. “In-ConcReTeS: Interactive Consis-
tency meets Distributed Real-Time Systems, Again!” In:
RTSS 2022.

[8] N. Gandhi et al. “REBOUND: Defending Distributed
Systems Against Attacks with Bounded-time Recov-
ery”. In: EuroSys 2021.

[9] A. Loveless et al. “IGOR: Accelerating Byzantine Fault
Tolerance for Real-time Systems with Eager Execu-
tion”. In: RTAS 2021.

[10] J. C. Eidson et al. “IEEE-1588™ Standard for a Pre-
cision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: PTTI 2002.

[11] D. Mills et al. RFC 5905: Network Time Protocol
Version 4: Protocol and Algorithms Specification. 2010.

[12] S. Schriegel et al. “Investigation in Automatic Deter-
mination of Time Synchronization Accuracy of PTP
Networks with the Objective of Plug-and-Work”. In:
ISPCS 2014.

[13] D. Arnold. BMCA Deep Dive: Part 1. Meinberg
Funkuhren GmbH. 2022. URL: https : / / blog .
meinbergglobal . com / 2022 / 02 / 01 / bmca - deep - dive -
part-1/.

[14] D. Mills. RFC 4330: Simple Network Time Protocol
(SNTP) Version 4 for IPv4, IPv6 and OSI. 2006.

[15] R. Cochran et al. “Design and Implementation of a PTP
Clock Infrastructure for the Linux Kernel”. In: ISPCS
2010.

[16] M. Maróti et al. “The Flooding Time Synchronization
Protocol”. In: ICENSS 2004.

[17] C. Lenzen et al. “PulseSync: An Efficient and Scalable
Clock Synchronization Protocol”. In: IEEE/ACM Trans-
actions on Networking 23.3 (2014).

[18] M. Lipiński et al. “White Rabbit: PTP Application for
Robust Sub-nanosecond Synchronization”. In: ISPCS
2011.

[19] F. Gong et al. “CESP: A Low-power High-accuracy
Time Synchronization Protocol”. In: IEEE Transactions
on Vehicular Technology 65.4 (2015).

[20] D. T. Bui et al. “Packet Delay Variation Management for
a Better IEEE1588V2 Performance”. In: ISPCS 2009.

[21] R. Exel et al. “Asymmetry Mitigation in IEEE 802.3
Ethernet for High-Accuracy Clock Synchronization”.
In: IEEE Transactions on Instrumentation and Measure-
ment 63.3 (2014).

[22] A. Flammini et al. “Clock Synchronization of Dis-
tributed, Real-time, Industrial Data Acquisition Sys-
tems”. In: Data Acquisition (2010).

[23] T. Neagoe et al. “NTP versus PTP in Computer Net-
works Clock Synchronization”. In: ISIE 2006.

[24] S. J. Wissow. “Time Enough: Synchronization for La-
tency Measurement”. PhD thesis. University of New
Hampshire, 2020.

[25] B. Ferencz et al. “Effects of Runtime Failures in IEEE
1588 Clock Networks”. In: I2MTC 2017.

[26] P. Ramanathan et al. “Fault-tolerant Clock Synchro-
nization in Distributed Systems”. In: Computer 23.10
(1990).

[27] A. Nasrullah et al. “Trusted Timing Services with
TimeGuard”. In: RTAS 2024.

[28] W. Alghamdi et al. “An Analysis of Internal Attacks on
PTP-based Time Synchronization Networks”. In: NUI
Galway (2022).

[29] S. Shi et al. “MS-PTP: Protecting Network Timing from
Byzantine Attacks”. In: WiSec 2023.

[30] N. Kerö et al. “How to Effectively Enhance PTP Re-
dundancy Using Dual Ports”. In: SMPTE 2023.

[31] S. K. Mani et al. “A System for Clock Synchro-
nization in an Internet of Things”. In: arXiv preprint
arXiv:1806.02474 (2018).

[32] D. Fontanelli et al. “Accurate Time Synchronization
in PTP-based Industrial Networks with Long Linear
Paths”. In: ISPCS 2010.

[33] O. Obleukhov et al. “Simple Precision Time Protocol
(SPTP)”. In: ISPCS 2023.

[34] P. Chen et al. “Understanding Precision Time Protocol
in Today’s Wi-Fi Networks: A Measurement Study”. In:
ATC 2021.

[35] C. Andrich et al. “Measurement of Drift and Jitter of
Network Synchronized Distributed Clocks”. In: IFCS-
ISAF 2020.

[36] E. Kyriakakis et al. “Hardware Assisted Clock Syn-
chronization with the IEEE 1588-2008 Precision Time
Protocol”. In: RTNS 2018.

[37] B. Ferencz et al. “Hardware Assisted COTS IEEE 1588
Solution for x86 Linux and its Performance Evalua-
tion”. In: ISPCS 2013.

[38] A. Kern et al. “Accuracy of Ethernet AVB Time Syn-
chronization under Varying Temperature Conditions for
Automotive Networks”. In: DAC 2011.

[39] M. Lévesque et al. “A Survey of Clock Synchronization
Over Packet-Switched Networks”. In: IEEE Communi-
cations Surveys and Tutorials 18.4 (2016).

https://blog.meinbergglobal.com/2022/02/01/bmca-deep-dive-part-1/
https://blog.meinbergglobal.com/2022/02/01/bmca-deep-dive-part-1/
https://blog.meinbergglobal.com/2022/02/01/bmca-deep-dive-part-1/

[40] R. Reussner et al. “SKaMPI: A Comprehensive Bench-
mark for Public Benchmarking of MPI”. In: Scientific
Programming 10.1 (2002).

[41] V. Bode et al. “Systematic Analysis of DDS Implemen-
tations”. In: Middleware 2023.

[42] F. M. Anwar et al. “OpenClock: A Testbed for Clock
Synchronization Research”. In: ISPCS 2018.

[43] F. Anwar et al. “Timeline: An Operating System Ab-
straction for Time-Aware Applications”. In: RTSS 2016.

[44] L. Schürmann et al. Implementation and Evaluation
of Time Synchronization Mechanisms for Generic Em-
bedded Systems for Time Sensitive Networking (TSN).
Tech. rep. University of Stuttgart, 2021.

[45] J. Coleman et al. “Emerging COTS Architecture Sup-
port for Real-time TSN Ethernet”. In: SAC 2019.

[46] F. Rezabek et al. “PTP Security Measures and their
Impact on Synchronization Accuracy”. In: CNSM. ’22.

[47] A. Finkenzeller et al. “PTPsec: Securing the Preci-
sion Time Protocol Against Time Delay Attacks Us-
ing Cyclic Path Asymmetry Analysis”. In: INFOCOM
2024.

[48] W. Alghamdi et al. “A Security Enhancement of the
Precision Time Protocol Using a Trusted Supervisor
Node”. In: Sensors 22.9 (2022).

[49] F. M. Anwar et al. “Applications and Challenges in
Securing Time”. In: CSET 2019.

[50] A. Libri et al. “Evaluation of Synchronization Protocols
for Fine-grain HPC Sensor Data Time-stamping and
Collection”. In: HPCS 2016.

[51] H. Shaygan. “Time Synchronization for Large Vol-
ume Metrology in Industrial Networks”. MA thesis.
Lappeenranta–Lahti University of Technology, 2023.

[52] E. H. Langemeijer. “Clock Synchronization For Radio
Interferometry”. MA thesis. Eindhoven University of
Technology, 2024.

[53] D. Ingram et al. “Assessment of Real-time Networks
and Timing for Process Bus Applications”. In: SEAPAC
2013.

[54] B. Briscoe et al. “Reducing Internet Latency: A Survey
of Techniques and Their Merits”. In: IEEE Communi-
cations Surveys and Tutorials 18.3 (2016).

[55] Stefan Tauner. OpenPTP - Precision Time Protocol
Implementation. 2012. URL: https://github.com/stefanct/
openptp.

[56] Timebeat Installation Overview. Timebeat. 2022. URL:
support.timebeat.app/hc/en-gb/articles/360021334279-
Timebeat-Installation-Before-you-begin.

[57] P. Fezzardi et al. “PPSi - A Free Software PTP Imple-
mentation”. In: ISPCS 2014.

[58] V. Bode. Potential Bug in PPSi. Private Communication.
E-Mail to Maintainer A. Wujek. Jan. 2024.

[59] Statime: Implementation of the Precision Time Protocol
(PTP) in Rust. 2024. URL: https : / / github . com /
pendulum-project/statime.

[60] W. Owczarek. ptpd(8) Precision Time Protocol Daemon
User’s Manual. 2.3.1. 2015.

[61] J. Breuer. PTPd Issue Tracker. 2023. URL: https : / /
github.com/ptpd/ptpd/issues.

[62] I. Genibel et al. Popularity Contest Statistics – Debian
Quality Assurance. Packages: PTPd, LinuxPTP, Chrony.
2015. URL: https://qa.debian.org/popcon.php.

[63] Welcome to The Linux PTP Project. Network Time
Foundation. 2024. URL: https://www.linuxptp.org/.

[64] O. Obleukhov et al. Simple Precision Time Proto-
col at Meta. Meta Platforms, Inc. 2024. URL: https :
/ / engineering . fb . com / 2024 / 02 / 07 / production -
engineering/simple-precision-time-protocol-sptp-meta/.

[65] A. E. Dinar et al. “NTP Server Clock Adjustment with
Chrony”. In: ICCCIOT 2020.

[66] Raspberry Pi 4 Spec. 2024. URL: https : / / www .
raspberrypi.com/products/raspberry-pi-4-model-b/.

[67] Avnet ZUBoard 1CG Development Board. 2024. URL:
https://www.xilinx.com/products/boards- and- kits/1-
1pusyun.html.

[68] Nvidia Jetson TK1: The World’s First Embedded Super-
computer. 2024. URL: https://www.nvidia.com/content/
tegra/automotive/pdf/jetson-tk1-brochure-web.pdf.

[69] Raspberry Pi 5. 2024. URL: https://www.raspberrypi.
com/products/raspberry-pi-5/.

[70] Raspberry Pi 4 and Raspberry Pi 5 Data Sheets. 2024.
URL: https://datasheets.raspberrypi.com/.

[71] S. J. Johnston et al. “Commodity Single Board Com-
puter Clusters and their Applications”. In: Future Gen-
eration Computer Systems 89 (2018).

[72] R. Curnow et al. chrony.conf(5) Chrony Configuration
User’s Manual. 4.4. 2023. URL: https://chrony-project.
org/doc/4.4/chrony.conf.html.

[73] J. Dugan et al. iPerf - The ultimate speed test tool for
TCP, UDP and SCTP. 2022. URL: https://iperf.fr/.

[74] K. Nichols et al. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. Request
for Comments: 2474. 1998.

[75] C. I. King. stress-ng (Stress Next Generation) - A Tool
to Load and Stress a Computer System User’s Manual.
0.15.06. 2023. URL: https://github.com/ColinIanKing/
stress-ng.

[76] fake-hwclock(8) Fake Hardware Clock System Man-
ager’s Manual. 0.11. Debian Distribution. 2014.

[77] H. Marouani et al. “Internal Clock Drift Estimation in
Computer Clusters”. In: Journal of Computer Systems,
Networks, and Communications (2008).

[78] D. Arnold. Five Minute Facts About Packet Timing.
Meinberg Funkuhren GmbH. 2023. URL: https://blog.
meinbergglobal.com/2013/10/28/one-step-two-step/.

[79] H. A. Abdelhafez et al. “Snowflakes at the Edge:
A Study of Variability among NVIDIA Jetson AGX
Xavier Boards”. In: EdgeSys 2021.

[80] D. Lion et al. “Investigating Managed Language Run-
time Performance: Why JavaScript and Python are 8x
and 29x slower than C++, yet Java and Go can be
Faster?” In: ATC 2022.

https://github.com/stefanct/openptp
https://github.com/stefanct/openptp
support.timebeat.app/hc/en-gb/articles/360021334279-Timebeat-Installation-Before-you-begin
support.timebeat.app/hc/en-gb/articles/360021334279-Timebeat-Installation-Before-you-begin
https://github.com/pendulum-project/statime
https://github.com/pendulum-project/statime
https://github.com/ptpd/ptpd/issues
https://github.com/ptpd/ptpd/issues
https://qa.debian.org/popcon.php
https://www.linuxptp.org/
https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.xilinx.com/products/boards-and-kits/1-1pusyun.html
https://www.xilinx.com/products/boards-and-kits/1-1pusyun.html
https://www.nvidia.com/content/tegra/automotive/pdf/jetson-tk1-brochure-web.pdf
https://www.nvidia.com/content/tegra/automotive/pdf/jetson-tk1-brochure-web.pdf
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://datasheets.raspberrypi.com/
https://chrony-project.org/doc/4.4/chrony.conf.html
https://chrony-project.org/doc/4.4/chrony.conf.html
https://iperf.fr/
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://blog.meinbergglobal.com/2013/10/28/one-step-two-step/
https://blog.meinbergglobal.com/2013/10/28/one-step-two-step/

	Introduction
	Background
	Related Work
	Motivation
	EtherTime
	Protocols & Testbed
	Baseline Evaluation
	Network Contention
	Other Resource Contention
	Fault Tolerance
	Resource Consumption
	Scalability
	Learnings and Conclusion
	Acknowledgements

