
Linux’s Processor Affinity API, Refined:
Shifting Real-Time Tasks

towards Higher Schedulability

Felipe Cerqueira, Arpan Gujarati, Björn Brandenburg

Task Migration under Current RTOSs:
Arbitrary Processor Affinities (APA)

Standard API provided by Linux, QNX, VxWorks, …

Task

Processor Affinity

Processors on
which this task is

allowed to execute

Use Cases of Processor Affinities

Security

Cache 
Locality

Energy 
Efficiency

Isolate tasks to prevent cache
side-channel attacks

Avoid migration-related cache misses

Restrict non-critical tasks to small,
power-efficient cores

and more…

Use Cases of Processor Affinities

Security

Cache 
Locality

Energy 
Efficiency

and more…

Application-specific affinity  
requirements may render 
the system unschedulable.

Affinities can cause Deadline Miss

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

Linux

Affinities can cause Deadline Miss

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

Linux

Tasks are released

Affinities can cause Deadline Miss

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

Linux

Processor idles, but Task 3
cannot execute there

Affinities can cause Deadline Miss

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

Linux

Task 3 misses deadline!

AffinitiesAffinitiesAffinities

Main Question

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

Linux

AffinitiesAffinitiesAffinities

Can we improve the ability to meet deadlines  
without violating the affinity assignment?

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Our Approach

Shifting Tasks to Improve the Schedule

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Linux

AffinitiesAffinities

AffinitiesAffinities

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Our Approach

Shifting Tasks to Improve the Schedule

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Linux

AffinitiesAffinities

AffinitiesAffinities

Task 1 shifts to the other processor  
so that Task 3 can execute

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Our Approach

Shifting Tasks to Improve the Schedule

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Linux

AffinitiesAffinities

AffinitiesAffinities

No deadline misses for Task 3!

New Migration Semantics 
for APA Scheduling

via Task Shifting

Processors

T3 restricted to  
this processor

T1

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

New Migration Semantics 
for APA Scheduling

via Task Shifting

Processors

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Shifting Migration

T1

T3

New Migration Semantics 
for APA Scheduling

via Task Shifting

Processors

Task 3 
scheduled

Shifting migrations free processors for a restricted task

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T3 T1

Improved Schedulability

Full API Compatibility

API compatibility  
No affinity violations  
Improved schedulability

Only change:  
when tasks migrate

Scheduler

Affinity API

{

API unmodified!

Overall

Similar Problem in Operations Research

Problem: Assign jobs in a hospital

(2) Senior employees have preference

Constraints:

Assignment Problem with Seniority
Constraints [Caron et al 1999]

[Caron et al 1999] Gaetan Caron, Pierri Hansen, and Brigitte Jaumard. 1999. The Assignment Problem with Seniority and
Job Priority Constraints. Oper. Res. 47, 3 (March 1999), 449-453.

(1) Jobs require qualification

Two variants

Weak Seniority Strong Seniority

Contributions of our Paper

1) Distinction between:

APA scheduling with shifting
APA scheduling without shifting Weak APA

Strong APA⟺
⟺

Contributions of our Paper

1) Distinction between:

APA scheduling with shifting
APA scheduling without shifting Weak APA

Strong APA⟺
⟺

2) Formalization of strong APA scheduling based
on Bipartite Matching

Contributions of our Paper

1) Distinction between:

3) Dynamic algorithm for task shifting

2) Formalization of strong APA scheduling based
on Bipartite Matching

APA scheduling with shifting
APA scheduling without shifting Weak APA

Strong APA⟺
⟺

Contributions of our Paper

1) Distinction between:

3) Dynamic algorithm for task shifting

4) Schedulability Analysis for strong APA Scheduling

2) Formalization of strong APA scheduling based
on Bipartite Matching

APA scheduling with shifting
APA scheduling without shifting Weak APA

Strong APA⟺
⟺

This Talk

Limitations of current  
APA schedulers

Schedulability Analysis

How to perform  
task shifting

Evaluation

This Talk

Limitations of current  
APA schedulers

Schedulability Analysis

How to perform  
task shifting

Evaluation

Limitations of Current APA Schedulers

⇧3

⇧2

⇧1
T1

T2

T4

Affinity Schedule

Example where  
Linux will violate  

task priorities

P1

P2

P3

Task T3 arrives

Linux locally checks if
there is a CPU to be

preempted in T3’s affinity.

⇧3

⇧2

⇧1
T1

T2

T3

T4

Affinity Schedule

P1

P2

P3

Linux does not Schedule the Task!

Linux locally checks if
there is a CPU to be

preempted in T3’s affinity.

No preemption! 
CPU 1 already has a
higher-priority task.⇧3

⇧2

⇧1
T1

T2

T3

T4

Affinity Schedule

P1

P2

P3

But there is a Better Schedule

⇧3

⇧2

⇧1
T1

T2

T3

T4
⇧3

⇧2

⇧1
T1

T2

T3

T4

Affinity Schedule

P1

P2

P3

P1

P2

P3

(Task priorities: T1 < T2 < T3 < T4)

Global Decision is Required 
to Compute the Correct Schedule

⇧3

⇧2

⇧1
T1

T2

T3

T4

Task 
priorities 
must be  

respected

Processor  
utilization  
must be  

maximized

Linux does not always guarantee both!

P1

P2

P3

This Talk

Limitations of current  
APA schedulers

Schedulability Analysis

How to perform  
task shifting

Evaluation

Scheduling as a Bipartite Matching

Any matching in the graph  
is a valid scheduler state

⇧3

⇧2

⇧1
T1

T2

T3

T4

P1

P2

P3

Maximum Bipartite Matching?

A maximum bipartite  
matching maximizes  
processor utilization

⇧3

⇧2

⇧1
T1

T2

T3

T4

P1

P2

P3

Maximum Bipartite Matching?

⇧3

⇧2

⇧1
T1

T2

T3

T4

…but does not enforce
task priorities.

A maximum bipartite  
matching maximizes  
processor utilization

P1

P2

P3

Maximum Vertex-Weighted
Bipartite Matching (MVM)

If we map task priorities 
to vertex weights,  

MVM is the optimal
scheduling decision.

⇧3

⇧2

⇧1
T1

T2

T3

T4

0

0

0

3

2

1

4

If we map task priorities 
to vertex weights,  

MVM is the optimal
scheduling decision.

⇧3

⇧2

⇧1
T1

T2

T3

T4
⇧3

⇧2

⇧1
T1

T2

T3

T4

0

0

0

4

3

2

1

Maximum Vertex-Weighted
Bipartite Matching (MVM)

0

⇧3

⇧2

⇧1
T1

T2

T3

T4

0

0

0

4

3

2

1

Scheduling decisions for strong APA can be
computed with existing graph algorithms.

Scheduling Decisions must be Fast!

• Scheduler is a critical part of an OS

• Computing an MVM from scratch is costly

Previous schedules are not just discarded.
We need a dynamic algorithm!

• Scheduler is a critical part of an OS

• Computing an MVM from scratch is costly

Scheduling Decisions must be Fast!

Recomputing MVM is Inefficient!

⇧3

⇧2

⇧1
T1

T2

T3

T4

P1

P2

P3

Task Migration in the Graph

⇧3

⇧2

⇧1
T1

T2

T3

T4
⇧3

⇧2

⇧1
T1

T2

T3

T4

Intuition

Task T1

P1 P2

T2

P3

Task

For some task that just arrived,  
any reachable task can be preempted

Affinity Schedule

Task Migration in the Graph

⇧3

⇧2

⇧1
T1

T2

T3

T4
⇧3

⇧2

⇧1
T1

T2

T3

T4

Intuition

T1

P1 P2

T2

P3

Task Task

We just need to shift tasks by taking 
the complementary edges in the path

Affinity Schedule

Updating the Matching

⇧3

⇧2

⇧1
T1

T2

T3

T4
⇧3

⇧2

⇧1
T1

T2

T3

T4

Intuition

T1

P1 P2

T2

P3

1) Task arrives 2) Preempt the lowest-  
priority reachable task

Thigh Tlow

Affinity Schedule

⇧3

⇧2

⇧1
T1

T2

T3

T4

Shifting Tasks with Graph Search

P1

P2

P3

⇧3

⇧2

⇧1
T1

T2

T3

T4

Shifting Tasks with Graph Search

P1

P2

P3

⇧3

⇧2

⇧1
T1

T2

T3

T4

Shifting Tasks with Graph Search

P1

P2

P3

⇧3

⇧2

⇧1
T1

T2

T3

T4

Preempting the
lowest-priority task 
produces an MVM!

Migrations determined
via backtracking

Shifting Tasks with Graph Search

P1

P2

P3

⇧3

⇧2

⇧1
T1

T2

T3

T4

Preempting the
lowest-priority task 
produces an MVM!

Shifting Tasks with Graph Search

Migrations determined
via backtracking

P1

P2

P3

Scheduling decisions updated
dynamically via BFS 

(linear in the size of the graph).

This Talk

Limitations of current  
APA schedulers

Schedulability Analysis

How to perform  
task shifting

Evaluation

Analyzing Strong APA Scheduling

• Previous work: Schedulability analysis for APA scheduling [1]

• Works only with Linux’s migration semantics 

• Recently: Linear-programming-based response-time analysis [2]

• Faster in practice

[1] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Schedulability Analysis of the Linux Push and Pull Scheduler with
Arbitrary Processor Affinities”, ECRTS’13, 2013. 
[2] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities:
From Practice to Theory”, Real-Time Systems, Springer, July 2014.  

We extend the LP-based RTA 
to consider task shifting!

Shifting Reduces Task Interference

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Weak APA  
(Linux)

AffinitiesAffinities

Shifting Reduces Task Interference

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

AffinitiesAffinities

Interference (due to task 1 executing)

Weak APA  
(Linux)

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Strong APA

Shifting Reduces Task Interference

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

AffinitiesAffinities

Affinities

Interference (due to task 1 not shifting)

Interference (due to task 1 executing)

Weak APA  
(Linux)

T1

T2

T3

0 time 105

z

x

y

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

T1

T2

T3

0 time 105

x

Affinities

The interference incurred by T3 is bounded by the time  
that high priority tasks cannot shift outside T3’s affinity.

Interference (due to task 1 not shifting)

Strong APA

Shifting Reduces Task Interference

This bound is valid only for a single migration!

Accounting for K-hop Shifting

T0

Analyzed 
Task

Accounting for K-hop Shifting

T0

Analyzed 
Task

Tk

Processor P0

Processor Pk-1

Processor Pk

sh
ift

ing
 k

ta
sk

s

Accounting for K-hop Shifting

T0
Interference induced by Tk on 
T0 is bounded by workload of 

high-priority tasks on Pk

Analyzed 
Task

Tk

hp hp
hp

Processor P0

Processor Pk-1
sh

ift
ing

 k
ta

sk
s

Details in  
the paper!Processor Pk

This Talk

Limitations of current  
APA schedulers

Schedulability Analysis

How to perform  
task shifting

Evaluation

Two Questions about 
Strong APA Scheduling

• To which extent does enabling task shifting
prevent deadline misses?

• Assuming non-zero migration overheads, do
the additional task migrations penalize the
benefits of shifting?

Phase 1: Task Set Generation

1) For each point, 800 randomly generated task
sets (Emberson et al.’s method [1])

2) Fixed-Priority tasks: DkC order [2]

3) Random generation of affinity assignments

 - Try to emulate application requirements

	 - More details in the paper

[1] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis of multiprocessor tasksets,” 1st Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems, 2010  
[2] R. Davis and A. Burns, “Improved priority assignment for global fixed priority pre-emptive scheduling in multiprocessor
real-time systems,” Real-Time Systems, vol. 47, no. 1, pp. 1–40, 2011

Phase 2: Schedulability Tests

Sim-Weak: Simulation of APA scheduling without shifting

RTA-Weak: Previous response-time analysis for Linux

Sim-Strong: Simulation of APA scheduling with shifting

RTA-Strong: New LP-based response-time analysis

Weak APA

Strong APA

Analysis vs. Simulation

Simulation
Failure ⇒ not schedulable

Analysis

(necessary condition)

Success ⇒ schedulable
(sufficient condition)

Upper Bound

Lower Bound

Question 1

• To which extent does enabling task shifting
prevent deadline misses?

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

GSN-EDF

Higher is better

Schedulability Curve

Benefits of Task Shifting 
(8 CPUs, 12 tasks)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Strong APA

W
eak APA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Benefits of Task Shifting 
(8 CPUs, 12 tasks)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Strong APA

W
eak

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Strong APA  
improves 

schedulability!

Benefits of Task Shifting 
(8 CPUs, 12 tasks)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Strong APA

W
eak APA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

RTA-Weak

PART

RTA-Strong

SIM-Weak

SIM-Strong

Strong APA  
improves 

schedulability!

Lower bound
Strong APA ≥
Upper bound  

Weak APA

Question 2

• Assuming non-zero migration overheads, do
the additional task migrations penalize the
benefits of shifting?

Effect of Migration Overheads
(4 CPUs, 7 tasks)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

0

100

250

500

750

Migration 
Overhead 

(in μs)

Pessimism in Overhead Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

0

100

250

500

750

Migration 
Overhead 

(in μs)

Conservative results:

Analysis assumes statically that all arrivals  
and completions cause every task to shift.

Pessimism in Overhead Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5

f
r
a

c
t
i
o
n

o
f

s
c
h

e
d

u
l
a
b
l
e

t
a
s
k

s
e
t
s

utilization of the task set

0

100

250

500

750

Migration 
Overhead 

(in μs)
Tighter bounds on the number of shifts

depend on task arrival patterns!

Conservative results:

Analysis assumes statically that all arrivals  
and completions cause every task to shift.

Conclusion
• We proposed new migration semantics called

strong APA scheduling, with better temporal
guarantees and maintaining API compatibility  
with major OSs.

• We presented a dynamic algorithm for scheduling
decisions based on task shifting.

• Strong APA scheduling significantly improves
schedulability (assuming negligible overheads).  
Migration overheads can still be analyzed (with
pessimism).

