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Failures due to Transient Faults

Transmission failures Tolerated by error detection
(faults on the wire) and retransmissions

Commission failures

(bit-flips in the memory buffers) Tolera:ced by active
replication of tasks on

Crash failures independent hosts

(due to fault-induced exceptions)

« How to decide the best replication strategy?
= |s Triple Modular Redundancy (TMR) enough? or is
Quadruple Modular Redundancy (QMR) required?
= Would you replicate only the high-frequency tasks? or only
the high-criticality tasks?
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= (Ensure no deadline violations)
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Retransmissions vs. Replication Tradeoff

For tolerating retransmissions-induced delays

= (Ensure no deadline violations)
= The more slack, the better!

versus |Active replication of tasks ?
= Reduced slack in the schedule
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How to statically determine the optimal replication factor?



This Work

For CAN-based distributed real-time systems...

e Probabilistic analysis

= Quantify the replication vs. retransmissions tradeoff
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The Larger Picture

The CAN-based system is just one component in a
safety-critical system...

Host 2
Message from @
Task Ato Task B
N _——
I‘ V CAN bus ‘ . . .
Host 1

(Photo: Airbus D&S/Dassault/Finmeccanica)

Host 3

UAV Power ~ CAN
Add a heat-sink to the Replicate tasks, add more
power supply unit ECUs to the CAN subsystem

What if the UAV has strict weight constraints?
= and you can either add the heat sink or the additional ECUs
= How do you decide the best choice?



Failures-In-Time (FIT) Rate

Expected #failures in one billion operating hours
= e.g., 1M UAVs flying for 1K hours each

HIGH TEMPERATURE GATE BIAS (HTGB)

Table 1. FIT Rate Calculations for AFCT-57J7ATPZ
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Post-Amp IC, Gennum 16QFN_ Assume: (91 - 170 Transistor) 1 23.00 \ 20 1 isential.
Laser Driver IC Supplier Info: Vitesse ) 64 1 64 ALENT [FAILURE RATE @ d how it
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= e.g., 1M UAVs flying for 1K hours each

Failures-In-Time (FIT) Rate

Expected #failures in one billion operating hours

HIGH TEMPERATURE GATE BIAS (HTGB)

Table 1. FIT Rate Calculations for AFCT-57J7ATPZ

Factor @ 40°C 1
Reliability Prediction Based On Stress Factor at 50% 1
Telecordia $A-332 Issue 2 - Parts Count Method Environmental Factor 1

Telecordia Information/ Component Quality
Component Data Source Quantity _ BaseRate(FITs) _ Factor __Failure Rate (FITs) FALURE RATE @
DFB Laser Avago Data @ 40 °C 1 200 08 16.0 HRS |90°C & 60% UCL
Monitor PIN Photodiode 1 77 08 62 oc
10G PIN Photodiode 1 77 08 62 s
Capacitors Fixed Ceramic 7 02 1 54 ﬁ_f“_"lﬁ.
Resistor Thick Film 21 051 1 107 e %
Thermistor Thermistor 1 2.10 1 21
Ferrite Chip (Inductor) Power Filter 14 230 1 322 2E+05 1825
MOSFET Supplier Info: On Semiconductor 1 400 1 40
EEPROM 2 Kbit CMOS 1 640 1 64
DAC Supplier Info: National 1 6.00 1 60

Semiconductor
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When is the CAN-based
distributed real-time system the
weakest link in the system?



This Work

For CAN-based distributed real-time systems...

e Probabilistic analysis
= Quantify the replication vs. retransmissions tradeoff

e FIT rate analysis
= Builds upon the proposed probabilistic analysis
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Fault Abstraction & Modeling

Transmission failures
(faults on the wire) . o1 Poisson

... Distribution

u=1

0.6

e
e~

Commission failures
(bit-flips in the memory buffers)

uw=2

Relative expected frequency

o
©)

u =10
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0 2 4 6 8 10 12 14 16 18

Number of rare events per sample

Crash failures
(due to fault-induced exceptions) *

Probability that each message is
omitted / corrupted / retransmitted

We do not consider software defects...
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System Model

Message M from M
Task A to Task B @ ouUT
. . Is OUT generated on time? Is
OUT generated from a logically

Host 1 Host 3 correct value of M?




System Model

with Task Replication

Host 2

Msg. Sender§ Receiver§ Replicas

M |Task A TaskB

Message M from
Task A to Task B



System Model

with Task Replication
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Aggregating the replicated messages

M’ OUT,
//_—b’—’ How & when to compute OUT

from multiple copies of M?

Message M; from replicas
of Task A to Task B

e Case 1: Synchronous Systems

= Common global time base
= e.g. majority value at the absolute deadline

e Case 2: Asynchronous Systems

= No global time base
= e.g. majority value after “enough” copies have been received
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The Larger Picture...
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Objectives:
= A good replication strategy for the CAN-based system
= Compare the reliability of the CAN-based system with

other components in the safety-critical system

Solution: FIT rate analysis
= Using the probabilistic analysis
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FIT Rate Analysis of the System

FIT rate of

the CAN
subsystem
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C

Standard procedure to compute FIT

rates given the failure probabilities, but
tailored for real-time workloads
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FIT Rate Analysis of the System

Host and network faults
follow a Poisson distribution

Probabilities that each message:
= retransmitted due to transmission failures
= omitted due to crash failures
= corrupted due to commission failures

Message

Network / Retransmission

faults

Message
Host / Omission

faults \
Message

Corruption

Lower Bound on the
Probability of Successful
Transmission of M1




e Broster et al's probabilistic response-time analysis*
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*Broster, lan, Alan Burns, and Guillermo Rodriguez-Navas. "Timing analysis of real-time communication
under electromagnetic interference." Real-Time Systems 30.1-2 (2005): 55-81.
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Broster et al’s probabilistic response-time analysis*

We extend the analysis for a set of message replicas
= E.g., any 1 out of 3 message replicas are transmitted on time
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*Broster, lan, Alan Burns, and Guillermo Rodriguez-Navas. "Timing analysis of real-time communication
under electromagnetic interference." Real-Time Systems 30.1-2 (2005): 55-81.
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Mobile Robot Workload™

Task Nameé Length (bytes)é Period (ms)é Deadline (ms)
MotorCtrl 2 2 2

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

Logging 38 240 240

Broster, lan, Alan Burns, and Guillermo Rodriguez-Navas. "Comparing real-time communication under electromagnetic
interference." Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on. IEEE, 2004.



Mobile Robot Workload™

Only the MotorCtrl task is replicated
(#replicas vary from 1 to 9)

Task Nameé Leg (bytes)é Period (ms)é Deadline (ms)

__________________ 2 2 2
_Wheell | N A 4
_Wheel2 | s A 4
_Radioln | 8 8 8
Proximity | 1 o1z 12
Logging 38 240 240

Broster, lan, Alan Burns, and Guillermo Rodriguez-Navas. "Comparing real-time communication under electromagnetic
interference." Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on. IEEE, 2004.



Evaluation

e Assess the proposed FIT rate derivation
= Comparison with results fromm CAN bus simulation



Evaluation

e Assess the proposed FIT rate derivation
= Comparison with results fromm CAN bus simulation

e |s the FIT rate analysis too coarse-grained?
= Analysis for various fault rates



Analysis versus Simulation for MotorCtrl

Lower means better
MotorCtrl reliability!

Prob. of Failure of MotorCtrl

#Replicas of MotorCtrl Task



Analysis versus Simulation for MotorCtrl
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Analysis versus Simulation for MotorCtrl
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FIT Rate of the System

FIT Rate Analysis of the CAN Subsystem

Lower means better
reliability of the
CAN subsystem!
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Find the best replication strategy for CAN-based systems
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Future Work

e More complex system models

= CAN-based systems bridged together
= Sporadic DAG models
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