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Abstract—The problem of replica coordination is fundamental
to building Byzantine fault-tolerant (BFT) distributed systems.
Seminal BFT architectures for safety-critical real-time systems
from the eighties and nineties relied on custom processors and
networks, and are hence not readily usable today. Modern-day
deployments on cloud platforms do not “scale down” to embedded
platforms and are not designed around timeliness. Recent work
on real-time BFT protocols focuses on simulations and reliability
analyses. In short, there exist no easily programmable BFT
libraries that can be conveniently retrofitted onto real-time
applications with deadlines and that perform well on embedded
platforms. We propose In-ConcReTeS, a BFT key-value store
designed for building highly reliable control applications on
commodity embedded platforms. At its core, In-ConcReTeS is a
real-time friendly redesign and an efficient implementation of a
BFT protocol used by seminal fault-tolerant architectures. We
evaluated In-ConcReTeS using an inverted pendulum simulation
and an automotive benchmark on a cluster of four Raspberry
Pis connected over Ethernet. Our results show that, unlike Redis
and etcd, In-ConcReTeS can repeatedly synchronize hundreds of
key-value pairs, while tolerating faults, every tens of milliseconds.

I. INTRODUCTION

Real-time software is central to autonomous systems, in-
cluding autonomous vehicles such as airplanes, spacecraft and
self-driving cars as well as safety-critical stationary systems
such as nuclear reactors, power grids, and air traffic control.
The software must remain functionally correct, both logically
and temporally, for long periods of time. To this end, testing,
verification, and certification efforts aim to ensure the absence
of design flaws or timing-related bugs in safety-critical real-
time software, whereas fault-tolerance mechanisms ensure
correctness despite unpreventable hardware faults at runtime.
This work focuses on the problem of timely fault tolerance in
the presence of random, environmentally induced faults.

Provisioning redundant components (replicas) is a common
approach to mitigating faults at runtime. However, in a system
with redundant components, proper redundancy management is
also necessary to ensure that (i) the system does not generate
undesired outputs, (ii) the replicas remain synchronized over
time, and (iii) if one or more replicas fail or diverge, the effects
remain masked. Effective redundancy management is a complex
problem, even more so in the context of real-time software
because of strict timing requirements. For instance, with active
replication, if replica determinism [57, 58] is desired, the fault-

free replicated components have to deliver identical outputs in
an identical order within a specified time interval.

The good news is that some of the most influential fault-
tolerant architectures for safety-critical real-time systems, which
were designed in the late eighties and early nineties, addressed
this problem in depth. They proposed hardware solutions
to ensure replica coordination in the presence of complex
Byzantine faults. These refer to inconsistent broadcasts in
distributed systems (e.g., replica R1 says to replica R2, “my
sensor reads 0.15” but to replica R3 it says, “my sensor reads
35.33”). The understanding was that transient and permanent
faults in the hardware could induce Byzantine faults in the
worst case [23, 61, 62]. The result was a series of Byzantine
fault-tolerant (BFT) architectures for extremely reliable real-
time applications [31, 32, 34, 38, 42, 50, 68].

Today, few application domains use custom hardware, let
alone for Byzantine fault tolerance. Prior solutions are hence
not readily applicable. At the same time, real-time software
has proliferated. For example, it is fairly easy to assemble a
fully functioning drone using commodity off-the-shelf (COTS)
hardware and open-source real-time software. However, there
are currently no Byzantine fault tolerance solutions available
that developers can retrofit onto existing real-time software
when they desire to make their product highly reliable. Cer-
tainly, not everyone has the same resources as the automotive
and avionics industries for research and development.

One option is to reuse one of the many cloud computing
middleware that have surfaced in the last decade, which offer
varying forms of fault tolerance [1, 2, 4, 11], or tap into research
on general-purpose BFT software [9, 18, 19, 22, 39, 54, 67].
Unfortunately, since these systems are designed for best-effort,
throughput-oriented applications, their performance suffers
when deployed on resource-constrained embedded devices or
when assessed in terms of predictability [45].

Recently, there have been some proposals from the real-time
systems community for achieving Byzantine fault tolerance
in real-time applications. Kozhaya et al. [40] and Gujarati
et al. [29] discuss extensions to BFT protocols while con-
sidering bounded delays, whereas Roth and Haeberlen [60]
discuss when Byzantine fault tolerance is overkill for real-
time applications. Their primary contributions are stochastic
analyses and simulations, which do not address practical
deployment challenges. Li et al. [45] and Loveless et al. [47]



propose methods to reduce the latency of failure recovery in
ZooKeeper [7] and distributed agreement in BFT state machine
replication (respectively). However, Li et al.’s focus is low-
latency edge computing, which is time-sensitive but not strictly
real-time, and Loveless et al.’s proposal, unlike, say, ZooKeeper,
cannot be easily retrofitted onto existing real-time software.
Verı́ssimo et al. [65, 66] propose the timely computing base
model for formally reasoning about applications with real-time
requirements on environments with uncertain timeliness, but do
not discuss or demonstrate its use for Byzantine fault tolerance.
Their model requires programmers to refactor their applications,
whereas we aim for a seamless integration.

This paper. We seek to develop a generic data store like
ZooKeeper, Redis, or Cassandra that is easy to integrate in
existing systems, but with a focus on periodic control appli-
cations, Byzantine fault tolerance, and real-time predictability
on commodity embedded platforms.

Hence, we revisit the problem of Byzantine fault tolerance
for real-time systems. Our aim is to answer the following
questions. If a real-time application with a high degree of data
exchange and communication is replicated, can the replicas
be synchronized using a BFT protocol after every periodic
iteration (like fault-tolerant architectures in the past)? What is
a convenient synchronization API for application developers,
and what are the system-level trade-offs involved?

Our main contributions are as follows (see Fig. 1 for an
overview). First, we propose RT-EIGByz, a predictable real-
time friendly implementation of a BFT distributed agreement
protocol, specifically, an interactive consistency protocol [56],
that was used in the design of seminal fault-tolerant architec-
tures like MAFT [34] and SPIDER [50] (Section III). Second,
we develop a distributed key-value store In-ConcReTeS, which
interfaces with real-time applications using a time-aware
API (to ensure data-age predictability), and transparently
synchronizes any values written to the store across independent
replicas using RT-EIGByz (Section IV). Third, we evaluate
In-ConcReTeS against two widely used distributed datastores
Redis [4] and etcd [1], using an inverted pendulum simulation
and an automotive benchmark emulation (Section V). We show
that In-ConcReTeS outperforms both baselines when interactive
consistency is desired repeatedly, every 50 to 100 milliseconds,
for hundreds of keys. We conclude with a summary of related
work and our main findings (Sections VI and VII).

II. BACKGROUND AND MOTIVATION

Our work on interactive consistency for real-time systems is
motivated by prior work on fault-tolerant architectures [34, 50]
for extremely reliable real-time systems, like flight control
systems. We thus start by revisiting an example from one of
these seminal architectures, MAFT [34], to understand the need
for and the objectives of interactive consistency in detail.

Consider a flight-control system consisting of nine unique
tasks responsible for processing the control laws for each
of the three axes of rotation (roll, yaw, and pitch), system
monitoring, and a validity check. These nine tasks (T1 to T9),

Fig. 1. Overview of our main contributions, RT-EIGByz and In-ConcReTeS.
1© Application tasks periodically write critical state variables to In-

ConcReTeS’s unpublished store along with respective publishing times (which
are absolute timestamps). RT-EIGByz periodically 2© empties the unpublished
datastore, 3© coordinates with replicas on remote nodes, 4© converges to
a synchronized set of values (i.e., which are agreed upon by all fault-free
replicas), and finally 5© adds these to the published datastore. 6© Application
tasks may access these values before the start of their next iteration.

their maximum execution times (E1 to E9, respectively), and
their dependencies (=⇒) are illustrated in Fig. 2(a)(top).

MAFT assumes that any fault is possible, no matter how
malicious, and therefore relies on modular redundancy and
distributed agreement protocols to tolerate Byzantine faults.
For instance, tasks T1−T8 in Fig. 2(a) have three active replicas
each that function concurrently and synchronously. These are
distributed among nodes N1 −N6. Task T9 must be executed
by all application processors and has six replicas.

At the end of each iteration, all replicas execute a distributed
agreement protocol to agree upon replica-specific copies of
application data. Each replica then locally runs a voting protocol
to reduce the multiple copies of application data into a single
copy. Fig. 2(b) illustrates the distributed agreement and voting
processes for task T1 and its replicas. Together, these add a
“confirmation delay” of ∆1

sync = ∆1
agreement + ∆1

voting time
units between the finishing time of task T1 and the starting time
of its dependent tasks. For instance, in the schedule illustrated in
Fig. 2(a)(bottom), the starting time of task T8’s replica on node
N4 is pushed back to t = 7 despite the application processor
on N4 becoming idle earlier (indicated by the box labeled φ
between t = 6 and t = 7), because T8 depends on task T4
but T4’s data is not globally synchronized until t = 7. In fact,
accounting for synchronization delays in complex real-time
applications is one of the challenges our work addresses.

Notice that MAFT first executes what we refer to as an
interactive consistency (IC) protocol (for distributed agreement).
Its objective is to ensure that all replicas know about every other
replica’s local data, but not to select a representative candidate
among these data items. The selection process instead is a
separate post-processing step whose criteria may vary for each
application. For example, in Fig. 2(b), a fault-tolerant midpoint
voting strategy is used after the IC algorithm to select the
final values. This distinction is important for real-time systems:



(a) Workload and schedule (b) Distributed agreement (interactive consistency) after task T1’s execution

Fig. 2. Example from MAFT [34]. (a) (Top) Workload description with inter-task dependencies and replica to node assignments. (Bottom) Schedule of replicas
of tasks T1 − T9 on nodes N1 and N4 along with the time spent on distributed agreement (synchronization) for each task. Since each node in MAFT contains
an applications processor and an operations controller processor, the tasks and synchronization can proceed in parallel. φ denotes waiting time; for instance,
since T8 depends on T4, it must wait for T4’s data to be synchronized before it can proceed. (b) Nodes N1 −N3 execute a two-round distributed agreement
protocol to agree upon a final value of task T1’s data from replica-specific data items d11, d12, and d13. The red arrow denotes an omission fault: messages
from N1 to N3 are omitted in both rounds, but N3 nonetheless finds out about data item d11 via N2 in the second round.

application data commonly includes sensor inputs, control
law parameters, and actuator commands, whose values can
differ slightly across replicas owing to noise in data collection,
arithmetic imprecision, and timing variations. Hence, separating
the two steps allows MAFT to not require equality among non-
faulty copies of data (a de facto assumption in most other forms
of distributed agreement), and instead to use more general
voting strategies for inexact answers [12].

Formal definition. The IC problem is defined as follows.
Suppose there are N process replicas, p0, p1, . . . , pN−1, who
want to synchronize their data, d0, d1, . . . , dN−1 (respectively),
with each other to remain consistent. Suppose each replica pi
also maintains a decision vector Di whose kth element denotes
the data from replica pk. Initially, of course, since each replica
pi is unaware of other processes’ data items, only the ith

element of Di is updated, i.e., Di[i] = di, whereas all other
elements are assumed to be empty, i.e., ∀k 6= i, Di[k] = ⊥.

The goal of an IC protocol is to achieve three objectives.
Each replica pi must eventually update each value Di[k] to a
value other than ⊥ that it believes to be the data of replica
rk (termination). If replicas pi and pk are correct – i.e., they
remain fault-free during the IC protocol execution and latent
faults that occurred in the past do not affect their current
operations – then their decision vectors must be identical,
i.e., Di = Dk (agreement). Finally, if replicas pi and pk are
correct, their decision vectors must also correctly reflect each
other’s data items, i.e., Dk[i] = di and Di[k] = dk (integrity).
For real-time systems, termination may additionally require
that the IC protocol finishes its execution before its deadline.

III. INTERACTIVE CONSISTENCY

A. Algorithm Criteria

Assuring interactive consistency among distributed nodes in
the presence of faults depends on several factors, including

the degree and type of faults (e.g., crash, corruption, or
inconsistent broadcast), fault detection mechanisms in use (do
checksums detect all “lies”?), network type (point-to-point or
broadcast), and clock synchronization (are nodes tightly or
loosely synchronized, or not synchronized at all?).

For instance, in the Controller Area Network (CAN) [20]
with robust bit synchronization and fault detection mechanisms,
atomic broadcast is guaranteed with very high probability [61],
so interactive consistency can be achieved relatively easily using
a single round of information exchange. On the other hand, if
we consider asynchronous nodes, even a single crash failure
can make distributed agreement impossible (FLP impossibility
result) [26]. Roth and Haeberlen [60] provide a tutorial on how
the complexity of the agreement protocol increases depending
on the fault model and external factors.

We choose an interactive consistency protocol based on
the following three criteria. First, we require Byzantine fault
tolerance. Prior work suggests that hardware faults can manifest
as Byzantine faults [23, 43]. Byzantine faults are often
associated with malicious agents in distributed systems, which
may lie. Since environmentally-induced faults occur randomly
rather than due to malicious intent, one might argue in favor of
using an IC protocol optimized for the weaker authenticated
Byzantine fault model.1 However, despite being a weaker threat
model, distributed agreement for authenticated Byzantine faults
is not necessarily more efficient because it requires the use of
authenticators (such as checksums or message authentication
codes), which can induce prohibitive overheads.

1Authenticated Byzantine faults are a subset of Byzantine faults [10]
also resulting in inconsistent broadcasts, but where the faulty nodes cannot
imperceptibly alter an authenticated message. For example, if replica R1 says
to R2, ‘my sensor reads 9.15’, R2 cannot lie to R3, “R1 says ‘my sensor
reads 0’!”, without getting caught. Since all messages are assumed to be
cryptographically authenticated, R3 can easily verify whether R1 generated
the message ‘my sensor reads 0’, and thereby find out that R2 is faulty.



Our second criterion is that we require a protocol that is opti-
mized for synchronous networks. Use of clock synchronization
protocols such as the Precision Time Protocol (PTP) [25, 27],
which can achieve sub-microsecond clock accuracy in a local
area network, is common in distributed real-time systems. Also,
the maximum time that any message is in transit can be upper-
bounded analytically for real-time applications. For example,
Loeser and Haertig [46] use network calculus [44] to upper-
bound the transmission delay in Ethernet-based systems. Hence,
the risk of complete network synchrony failure is sufficiently
low, if not zero. An alternative is to consider a protocol
that is optimized for partially synchronous networks [24, 65],
wherein message delivery bounds may occasionally be violated
in the presence of faults, e.g., due to a fault-induced router
reboot [28]. Unfortunately, algorithms designed for partial
synchrony overcome temporary phases of asynchrony through
additional rounds, but such an approach is counter-productive
in real-time systems because data is time-sensitive, i.e., delayed
messages have zero utility. From a certification point of view,
it is actually preferable to employ a simpler protocol that
drops tardy messages rather than one that introduces additional
complexity to ensure delayed message delivery in the wake of
an unlikely loss of network synchrony.

The majority of BFT protocols is leader-based, i.e., they
mark one replica as primary and the remaining as secon-
daries. Even though secondary replicas may remain active
throughout, their outputs are suppressed, unless the primary
replica malfunctions. Leader-based protocols are vulnerable
to performance degradation due to faulty leaders, which may
become a reliability bottleneck in real-time applications [8].
For example, if the mechanism to switch the primary can take
up to ∆switch time units, but a critical data item in a high-
frequency control loop needs to be synchronized among its
replicas in less than ∆switch time units, a primary failure can
render the control loop unavailable for one or more iterations.
Therefore, our third requirement is a leader-less BFT protocol.

The interactive consistency algorithm used in MAFT [56]
satisfies all these criteria. Hence, we reuse it, while focusing
on a specific version of that algorithm, EIGByz, by Borran and
Schiper [13]. EIGByz is preferable because of its simplicity
and because implementing it using real-time periodic tasks is
straightforward, as observed by prior work [29].

B. Implementation

Readers may refer to EIGByz’s pseudocode in the original
paper by Borran and Schiper [13, Algorithm 1]. We explain
our implementation in brief for a single instance of EIGByz,
which solves a single instance of interactive consistency (as
formally defined in the previous section). Henceforth, we refer
to our implementation of EIGByz as RT-EIGByz.

Recall from Section I that real-time predictability is one of
our primary objectives. That is, the latency of system operations
must be bounded, if the workload is bounded. At the same
time, our system must be able to repeatedly synchronize the
data of periodic real-time tasks among replicas every tens of

milliseconds. That is, replica coordination latencies must be
extremely low, on a consistent basis.

To achieve these objectives, we need to address two main
challenges not considered in prior work. EIGByz collects all
its data in a complex Exponential Information Gathering (EIG)
tree data structure. Given that we know exactly how and when
specific nodes in the tree are accessed, how can RT-EIGByz lay
out the tree in memory for extremely efficient reads and writes?
How can we implement RT-EIGByz’s networking layer such
that it is timely and at the same time tolerates slow, or crashed
replicas without compromising the progress of the algorithm?
We address these challenges while walking through the high-
level structure of the algorithm (which is derived from EIGByz).
To disambiguate RT-EIGByz from EIGByz, we number the
optimizations that are specific to our implementation.

Data structures. The number of children of each node in the
EIG tree is equal to the number of replicas N participating in
the IC protocol, and the number of levels in the tree is equal
to one plus the number of rounds R in the IC protocol.

1© In the case of real-time systems, both N and R will
typically be determined at design time for predictability. Hence,
RT-EIGByz ensures that each replica pi statically allocates a
tree object EIG i at the start, which has enough memory to
accommodate the intermediate data for all rounds, removing
the need for dynamic memory allocation.

2© RT-EIGByz lays out EIG trees as a set of one-dimensional
arrays, which greatly reduces memory copying overheads when
exchanging data between replicas. In particular, each tree
EIG i consists of R + 1 one-dimensional arrays and the xth

array EIG i[x] consists of Nx elements (tree nodes), such that
EIG i[0][0] is the root node, and EIG i[x + 1][z · Nx + y] is
the zth child of any node EIG i[x][y], for z ∈ [0, N − 1].

EIGByz requires each node in the tree to consist of a data
item and a label. The root node of replica pi’s tree EIG i

consists of its local data di and an empty label. The subsequent
nodes store data items that are received from other replicas
via message exchanges, either directly or indirectly, and labels
denoting the provenance of their data items (respectively).
3© However, RT-EIGByz does not require nodes to store label

information. Instead, it uses the path to a node from its root
as a proxy for its label. For example, suppose that

• pa tells pb “my local data is da”,
• pb tells pc “pa’s local data is da”, and
• pc tells pi “pb told me that pa’s local data is da”.

Replica pi stores da in the cth child of the bth child of the
ath child of the root node of its tree EIG i. Path a  b  c
is therefore sufficient to indicate the provenance of this data.
Since a replica never ends up indirectly informing itself about
its own data item, only cycle-free paths are considered valid,
i.e., paths such as a b a are invalid.

Runtime protocol. EIGByz derives its simplicity from the
EIG tree data structure. That is, given the aforementioned
definitions, the runtime protocol is fairly straightforward.

In the initialization stage, each replica pi stores its local
data di in the root node of its tree EIG i.



This is followed by the communication stage consisting of
R rounds of information exchange. In each round r ∈ [1, R],
each replica pi sends all elements in the rth level of its tree,
i.e., EIG i[r − 1], to all replicas, including itself. Each replica
pi then waits for a pre-configured network delay, after which
it expects to have received analogous messages from other
replicas. After waiting, each pi copies the entire message
received from every replica pj into the (r + 1)th level of its
tree with an offset of j slots, at EIG i[r][j ·Nr−1].

4© RT-EIGByz’s array layout greatly simplifies the compu-
tations involved in the communication step: since all elements
in EIG i[r − 1] are stored in a contiguous region of memory,
sending is efficient; and since messages received from peers
are copied entirely (without breaking them down) to specific
locations in EIG i[r], receiving is efficient.

Finally, each replica pi executes the reduction stage, where
it traverses the tree from level x = R−1 to x = 1 and updates
the data item stored in each EIG i[x][y] to reflect the simple
majority among all the valid children of this node. At the end
of the reduction stage, each replica pi’s EIG tree is reduced
to a two-level tree, whose second level represents its decision
vector Di. EIGByz, and by extension RT-EIGByz, guarantees
that, if N > 3f and R = f + 1, where f denotes the number
of faulty replicas, then interactive consistency is assured.

Networking. 5© As explained above, RT-EIGByz’s design
involves exchanging large chunks of the EIG tree among peers.
UDP packet size is limited to only 65535 bytes, which may
not be sufficient. We therefore use TCP as our transport layer
protocol, which, unlike UDP, automatically fragments large
payloads and ensures in-order delivery.

6© The flow control algorithm in TCP may interfere with
our predictability goals, especially in the presence of faulty
processes. For instance, if faulty receivers do not consume
data sufficiently fast, TCP’s flow control limits the rate at
which senders may send data. The fault-induced rate limiting
in turn affects the network latency incurred between another
pair of correct proceses. We address this problem by setting a
(configurable) timeout every time a message is being prepared
for sending; after the timeout, any attempt to write the message
to the TCP socket is aborted, allowing RT-EIGByz to progress
despite slow or Byzantine receivers. Faulty senders are tolerated
similarly using timeouts on the receiver side.

7© The networking layer is implemented using
boost.asio’s [37] async API, which allows us to send
data via multiple TCP sockets in parallel without blocking
or having to manage threads, thereby maximizing network
utilization. To start a round of RT-EIGByz, each replica first
adds a list of send and receive tasks to its async task queue.
The async task queue executes tasks concurrently until all
tasks are complete. Upon timeout, all incomplete tasks are
cancelled, and the algorithm moves on to the next round.

In the next section, we describe how RT-EIGByz interfaces
with our key-value store In-ConcReTeS, and how we scale up
our implementation for synchronizing multiple data items.

IV. KEY-VALUE STORE

The example from MAFT [34] (Section II) consisted of nine
tasks and their replicas provisioned over six independent nodes.
Real-time applications today are at least an order of magnitude
more complex, consisting of tens to hundreds of real-time tasks
with lots of inter-task dependencies and a much larger state
space, requiring multiple instances of RT-EIGByz or other such
distributed agreement protocols, if interactive consistency is
desired. The benchmark from Robert Bosch GmbH [41] that
we use for evaluation is a good example.

Commodity platforms do not have a dedicated processor
like the operations controller in MAFT attached to each
node, which is hard-wired for implementing Byzantine fault
tolerance. RT-EIGByz realizes this in software, but how can
we scale it up to coordinate hundreds of data items? How
do we interface it with real-time applications without putting
the burden of initialization and redundancy management on
application programmers? How do we ensure that RT-EIGByz
finishes coordination in time for other dependent tasks?

A. Overview

To address the aforementioned challenges, we propose In-
ConcReTeS, a middleware that provides a uniform and consis-
tent global key-value store (KVS) abstraction to all application
replicas and uses RT-EIGByz for interactive consistency.

As shown in Fig. 1 earlier, the real-time applications hosted
on each node interact with a local instance of In-ConcReTeS,
which consists of three components: a frontend that interfaces
with applications, a backend that interfaces with In-ConcReTeS
instances on other nodes, and a local in-memory datastore.

Real-time applications can be easily interfaced with In-
ConcReTeS by replacing reads and writes of specific (global
and critical) variables in their programs with the KVS read
and write primitives exposed by In-ConcReTeS’s frontend API.
The data items written to the KVS can then be transparently
synchronized by the backend, which may occur even at a
later point in time based on the timing requirements of the
data. As shown in Fig. 1, a real-time application need not be
aware of the IC protocol, does not directly communicate with
other replicas, and is not privy to the number of replicas that
interface with In-ConcReTeS. As a result, the replication factor
or the IC protocol can be transparently adjusted based on fault
assumptions, without any changes to the application.

We discuss the key aspects of In-ConcReTeS’s design and
implementation details in the following sections.

B. Time-Aware Key-Value API

The utility of a data item in real-time applications typically
decreases with time as the state of the physical world evolves.
To simplify reasoning about maximum and minimum data ages,
and to assist testing and validation efforts by reducing the space
of possible executions, good design emphasizes temporal deter-
minism. That is, “as fast as possible” or similar best-effort data
propagation semantics can be severely detrimental in real-time
systems because, under such semantics, implementation-level
changes and random fluctuations in system state (e.g., minor



changes in network traffic or CPU load) can affect the age of
data consumed by controllers in unpredictable ways, which
opens the door to race conditions, increases model uncertainty,
and thus drives up the costs of rigorous validation.

In-ConcReTeS is hence designed to ensure temporal deter-
minism, which also differentiates it from other contemporary
distributed key-value stores. In-ConcReTeS requires program-
mers to provide with each read and write operation an absolute
point in time that expresses data availability and freshness
requirements, respectively. This requirement is embedded into
In-ConcReTeS’s frontend API, which consists of the usual
read/write interface common to all KVS, but enhanced with
an absolute publishing time parameter, as defined below.2

The write(k, tpub , v) interface takes key k, publishing
time tpub , and value v as parameters, and returns success if
interactive consistency for key-value pair (k, v) can be assured
by time tpub . The key-value pair (k, v) written to the store
becomes visible to applications only at its publishing time tpub ,
that is, no read of k prior to time tpub will return v. Hence,
the value v is considered published at time tnow only if it is
already globally synchronized across its replicas by then and
if tnow ≥ tpub . The read(k, tpub) interface takes key k and
publishing time tpub as parameters, and returns the latest key
value that has been published no earlier than tpub .

The write interface’s time parameter decouples the time of
data production from data availability in a predictable manner:
if a data item is produced early, it will nonetheless not be
consumed early, and if a data item is produced late, it will be
rejected outright (rather than confusing consumers in difficult to
anticipate ways). Conversely, the read interface’s time parameter
imposes a data freshness constraint, i.e., it limits the publishing
time of the oldest value that can be accepted by a successful
read operation. The parameter, again, refers to an absolute
point in time, which renders the result independent of the
time when the operation is executed. In short, by expressing
temporal constraints as absolute time instants, In-ConcReTeS
both decouples the semantics of the provided KVS abstraction
from implementation-level details and leverages the strong
synchrony provided by the clock synchronization protocols
already in common use in real-time systems today.

For performance reasons, both interfaces are designed to
be non-blocking. Based on offline timing analysis or runtime
admission control, the write interface assumes that the given
value can be published in a timely manner in the absence of any
faults. The write interface hence stores the given value and its
publishing time and immediately returns success; coordination
with other replicas occurs asynchronously. Similarly, the read
interface immediately yields a matching published value or an
error signaling the absence of one. Hence, both interfaces incur

2The publishing time parameter is inspired by the logical execution time
paradigm [30, 36], which decouples the read and write time of global data
used by a task from the actual execution time of the task, thereby enabling
programmers to make definitive statements about when written data is available
in the system and ready to be read by tasks on different nodes. The resulting
data determinism eliminates execution-time dependent race conditions.

Algorithm 1 Controller interfaced with In-ConcReTeS
1: procedure KVSBACKEDINVERTEDPENDULUM
2: time ← LastActivationAt() . Compute freshness constraint
3: globalTarget ← KVS.read(“target”, time) . Get globally consistent
4: globalIntegral ← KVS.read(“integral”, time) . . . . values of key
5: globalError ← KVS.read(“error”, time) . . . . parameters
6: current ← GetSensorData()
7: error ← globalTarget − current
8: integral ← globalIntegral + error
9: derivative ← error − globalError

10: force ← kp ∗ error + ki ∗ integral + kd ∗ derivative
11: time ← timeOfNextActivation() . Compute publishing time
12: KVS.write(“error”, error, time) . Globally synchronize state with
13: KVS.write(“integral”, integral, time) . . . . other replicas
14: actuate(force)
15: end procedure

only a small overhead (that of access to the local datastore)
on the application’s execution time.

It is possible for a key to have multiple values attached to it,
each with a different publishing time. That is, the pair (k, tpub)
denotes the unique key internally for In-ConcReTeS.

Algorithm 1 illustrates an example control loop interfaced
with In-ConcReTeS. The controller replicas synchronize the
error and integral variables (which they use across iterations,
i.e., the control loop’s global state) using In-ConcReTeS. For
clarity, error handling has been omitted. In summary, In-
ConcReTeS ’s KVS API is a minimal, yet expressive foundation
for writing temporally-aware, time-deterministic applications.

C. Implementation

In-ConcReTeS’s implementation must address two main
challenges. First, it must efficiently incorporate RT-EIGByz
to achieve interactive consistency for all (k, tpub , v) tuples
that are written to the datastore. Second, since the primary
objective of In-ConcReTeS is to cater to control applications,
it must ensure that interactive consistency is achieved in time
(specifically, before the publishing time of each data item), and
without affecting other real-time applications’ timeliness.

Managing multiple data items. The naive solution is to start
a new instance of RT-EIGByz for each (k, tpub , v) tuple that
is written to In-ConcReTeS. This approach can be inefficient
because it requires additional processing (multiplexing and use
of multiple sockets) every time RT-EIGByz messages need to
be sent over the network. Instead, multiple data items that are
written by the same control application and which, typically,
have the same publishing time can be batched together and
synchronized using a single instance of RT-EIGByz, e.g., the
error and integral keys in Algorithm 1. In fact, since RT-
EIGByz relies on TCP, its networking layer is not limited by
packet sizes; we can thus extend this approach further to batch
multiple data items that may be written to In-ConcReTeS by
different control applications.

To accomplish batching, we modify RT-EIGByz to work for
a predetermined number of batched keys, as well as predeter-
mined key and value sizes. That is, since real-time workloads
tend to be deterministic, we assume that upper bounds on the
number of keys and their sizes can be estimated a priori, and



RT-EIGByz data structures (EIG tree nodes) are then allocated
more space upfront proportional to these upper bounds.

We introduce two new local datastores (simple C++ maps),
published and unpublished, which respectively act as a source
and sink for RT-EIGByz. All write requests are first inserted
into the unpublished datastore. During the initialization stage,
each instance of RT-EIGByz batches all tuples in this datastore
and copies the batch into the root of its EIG tree. During
the following communication stages, RT-EIGByz exchanges
batched values between nodes, which is efficient since large
contiguous regions of memory are sent and received over the
network. RT-EIGByz then reduces the large EIG tree into
a decision vector, which contains the batches proposed by
different nodes. Finally, the decision vector is un-batched
before reducing multiple node-specific copies corresponding to
each (k, tpub) pair into a single copy using application-specific
criteria, such as median or simple majority.

Managing time. Batching is limited by the publishing times
of keys, some being more urgent than others. RT-EIGByz
over batched data must therefore complete before the earliest
publishing time. We ensure this by executing RT-EIGByz as a
recurring task, whose time period is determined as a function
of the application frequencies, their publishing times, their
worst-case execution times (WCETs), and RT-EIGByz’s WCET.
Since this approach is workload specific, we discuss it in our
evaluation for each benchmark separately.

Both application and RT-EIGByz tasks are realized as single-
threaded real-time periodic tasks, and implemented in C++
using Linux’s clock gettime and clock nanosleep APIs [14].
These tasks must be deployed on the same core, mimicking a
uniprocessor scenario. Access to shared maps, i.e., published
and unpublished datastores, by the application tasks during
reads and writes remains safe if the tasks do not interleave,
which is ensured through appropriate priority and offset
assignment.3 To exploit the full capacity of a multicore platform,
separate instances of In-ConcReTeS can be provisioned on each
core, and application tasks may interface with their core-local
instance; safety is ensured through partitioned scheduling.

Typically, a fault-tolerant N -modular redundant (NMR)
datastore is realized by linking instances from N different
nodes. For example, four dual-core platforms (nodes) can
be abstracted as two NMR datastores with N = 4; the first
datastore may consist of instances local to core 0 on each node,
and the second may consist of instances local to core 1 on
each node. Placing the N modules of an NMR datastore on
different cores of the same node is not recommended.

V. EVALUATION

We answer three questions: (i) How does In-ConcReTeS
compare against general-purpose fault-tolerant key-value stores
like Redis and etcd, which are fast but not optimized for

3The problem of interleaving does not arise if the application and
coordination tasks are implemented in a single thread. Conceptually, such
an implementation is feasible. Nonetheless, we use separate threads since
we expect these tasks to be programmed separately. Our design also allows
extension to more complex scheduling models in the future.

real-time predictability? (ii) Does In-ConcReTeS perform well
even in the presence of faults or is there a performance
penalty? (iii) How does In-ConcReTeS scale with the number
of keys? We answer (i) and (ii) using an inverted pendulum
simulation [52] and (iii) using emulated workloads based
on a real-world automotive benchmark from Robert Bosch
GmbH [41]. We first describe our evaluation platform and
experimental setup, and the considered baseline configurations.

Setup. All experiments were performed on a cluster of four
Raspberry Pi 4 Model B units [3], each equipped with a 1.5GHz
Cortex-A72 quad-core processor and 4GB of memory. The
four Pis were connected over IEEE 802.3ab Gigabit Ethernet
using a 1Gbps Ethernet connection. The Pis were running
Raspbian GNU/Linux 10. We use all four Pis, i.e., N-modular
redundancy (NMR) with N = 4, unless specified otherwise.

We installed ptp4l on each Pi for clock synchronization using
software timestamping, and for predictability configured it to
run with the highest real-time priority and use a separate virtual
network interface. We extracted the clock skew data during
idle times and during experiments from ptp4l.service logs
using journalctl [33]. When the Pis are idle, we observed a
clock skew of around 20µs. However, when the Pis are running
a network-heavy workload, e.g., In-ConcReTeS, we noticed
more noise in clock synchronization and the skew occasionally
reaching around 200µs. While such transient disturbances are
unavoidable in our current setup, we expect that hardware
timestamping along with TSN-compatible Ethernet switches
could significantly improve clock synchrony.

Baselines. We consider two baselines, Redis [4] and etcd [1].
Redis is an in-memory high-performance datastore with support
for a variety of data formats. Redis is a single-threaded
server written in C and is not designed to benefit from
multiple CPU cores [5]. Instead, as with In-ConcReTeS, users
are expected to deploy multiple Redis instances on several
cores for scalability. Hence, although Redis does not offer
Byzantine fault tolerance, it is a good baseline for evaluating
In-ConcReTeS’s performance. In contrast, etcd is a strongly
consistent, distributed key-value store written in Go, which
uses the Raft Consensus Algorithm [54] for fault tolerance.
etcd is therefore closer to In-ConcReTeS in terms of its fault
tolerance properties (even though it is leader-based).

We configured Redis as a collection of twelve standalone
instances. Three instances were provisioned on every node,
and each instance was pinned to a unique core. We left
the fourth core on each Pi idle to reserve some bandwidth
for kernel and networking utilities. Although different Redis
instances can be tied together in a replicated setup, we left
them as standalone instances since Redis does not ensure strong
consistency. Instead, for fault tolerance, we introduced a read
API that queries four separate Redis instances (on separate
nodes) every time, reads a copy of data from each instance
(which is analogous to constructing a “decision vector” in
RT-EIGByz), and then using an application-specific function
(e.g., simple median for sensor values) fuses these into a single
copy that is returned back to the application. In contrast, the



write API interacts with only the core-local Redis instance. We
use the sorted sets data structure in Redis where every string
value is stored along with a floating-point score, and clients
can retrieve values using keys as well as range-based queries
on scores. We store publishing times as scores.

Unlike Redis, etcd ensures strong consistency, therefore its
configuration was relatively simpler. We provisioned etcd as a
distributed cluster with one instance on every node. Given key
k, publishing time tpub , and value v, our write API writes the
entire (node ID, k, tpub , v) tuple to the local etcd instance. The
write completes only after etcd has propagated the tuple to all
nodes. During read, our API queries only the local instance but
for multiple tuples of the form (node ID, k, tpub), each with a
different node ID. The read API thus collects multiple copies,
which are then fused into a single value, as in Redis.

We developed core-local proxies for etcd and Redis, both
of which are extensions of our real-time periodic task imple-
mentation. The proxies are accessed by the application tasks
for reads and writes. Other than that, in the case of etcd, once
the proxies are initialized at the beginning, nothing needs to
be done during periodic invocations. While etcd automatically
garbage-collects old values, in the case of Redis, our core-local
proxies periodically issue garbage collection queries.

A. Inverted Pendulum Simulation

In the first set of experiments, we compared In-ConcReTeS
with Redis and etcd using an inverted pendulum C++ simulation
by Morgado [52], which relies on numerical analysis to simulate
the inverted pendulum physics and a PID controller (e.g., see
Algorithm 1) to control the simulated inverted pendulum. It
consists of a periodic task, IvPSim, whose computation is split
into three parts. The first part simulates reading a sensor by
invoking the simulator to compute new values of parameters
that uniquely determine the inverted pendulum’s position and
velocity in a two-dimensional space. The second part executes
the PID controller, which computes the horizontal force that
needs to be applied to the cart to ensure a target angular
position of zero degrees. The third part “actuates” the cart,
i.e., updates the current force in the simulation.

Our objective is to run the simulation across multiple replicas
in a synchronized fashion despite faults. Hence, periodic
transitions in the simulation state must be identical across
replicas (this is motivated from the fact that, in practice, a
single physical control system may be controlled by replicated
software controllers for reliability). Secondly, the PID controller
outputs on each replica must be aggregated and reduced to a
single correct output, which is then used for actuation (either
by a designated primary or a dedicated hardware unit).

Using In-ConcReTeS, it is easy to ensure these requirements.
In every iteration, the PID controller reads its global parameters
integral and error from In-ConcReTeS at the start of the
iteration, and writes their updated values back to the datastore
in the end of the iteration. Similarly, the simulator reads (writes)
all its state variables from (to) In-ConcReTeS at the start (in
the end) of every iteration (respectively). Altogether, a single
instance of IvPSim reads and writes 19 floating point values

in every iteration, including parameters like angular velocity,
angular position, cart velocity, and cart position, etc.

Data copies from different replicas are fused by computing
the median to account for noise in the control system data.4

When working with four replicas, we require for fault tolerance
that at least three out of four copies are available for computing
the median; otherwise, the fuse function returns an error. Recall
from Section II that interactive consistency allows the use of
such application-specific fuse functions.

Experiment setup. Each experiment is configured using four
parameters. N denotes the number of nodes, C denotes the
number of cores used (in other words, the number of NMR
setups we run in parallel), I denotes the number of distinct
IvPSim tasks per core, and T denotes the time period of each
IvPSim task. For example, suppose N = 4, C = 3, I = 4, and
T = 100ms. In this configuration, cores 0, 1, and 2 on each Pi
run four different IvPSim tasks per core, resulting in 48 IvPSim
tasks altogether: {Tivp,n,c,i | n ∈ [0, 3], c ∈ [0, 2], i ∈ [0, 3]}.
Each quadruple {Tivp,0,c,i, Tivp,1,c,i, Tivp,2,c,i, Tivp,3,c,i}
consists of replicated tasks forming an NMR setup. Each core
also hosts a local KVS instance, resulting in 12 more periodic
tasks: {Tkvs,n,c | n ∈ [0, 3], c ∈ [0, 2]}. KVS tasks coordinate
data written by core-local application tasks.

In case of In-ConcReTeS, since reads and writes are non-
blocking, we observed based on initial profiling that the WCETs
of IvPSim tasks were always under ωivp = 0.5ms. We therefore
considered an upper bound of ωubivp = 1ms on their WCET,
and provisioned each task Tivp,n,c,i with an offset of ωubivp × i
and each task Tkvs,n,c with an offset of ωubivp × I . Furthermore,
if multiple cores were used, we introduced different starting
offsets for each core, so that core-specific network I/O could
be spread out in time (this benefits all baselines).

Experiment A1. We considered 20 configurations: a unipro-
cessor setup with C = 1 or a multiprocessor setup with
C = 3 (one core is idle for background tasks), either
I = 1 or I = 4 IvPSim tasks per core (the second scenario
generates four times more workload for the KVS), and time
period as T ∈ {800ms, 400ms, 200ms, 100ms, 50ms}. We
let each configuration run for five minutes, and measured
(i) the percentages of IvPSim iterations during which all
reads succeeded and all writes succeeded (respectively); and
(ii) the best-case, average-case, and worst-case execution times
(BCETs, ACETs, and WCETs) across all IvPSim and KVS
tasks (respectively). Results are illustrated in Figs. 3(a) and 3(b).

There are two key takeaways from this experiment. First,
in terms of success rates, In-ConcReTeS scores a hundred in
every configuration, and outperforms Redis and etcd, as shown
in Fig. 3(a). Redis matches In-ConcReTeS when I = 1, but
starts to underperform every time the workload per core is
increased to I = 4, since the number of keys also increases
proportionally (notice the darker blue bars for I = 4, which
have less than 10% success rates). etcd, on the other hand,

4Simple majority does not apply as all values are floats and hence expected
to be unique even in fault-free scenarios. We are yet to evaluate simple majority
after rounding the floats based on a pre-configured accuracy threshold.
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Fig. 3. IvPSim Experiment A1 results. Both (a) and (b) consist of 120 bars each. These 120 bars are divided into 20 groups of six bars. The 20 groups
correspond to the 20 different configurations that we considered in experiment A1; the configuration relating to each group is specified under its bars. Missing
etcd bars in (a) denote a success rate of zero. Error bars in (b) depict the observed BCETs and WCETs.

almost always underperforms (notice the red bars). Since etcd
ensures strong consistency at write time, its success rate for
writes is often zero (notice the missing bars); this implies that
in each IvPSim iteration, since each write blocks until etcd has
synchronized it globally, some of the writes do not manage
to even start before their publishing times. Second, we realize
from the execution times shown in Fig. 3(b) that KVS and
IvPSim tasks in In-ConcReTeS incur reasonably low overheads
(under 10ms) irrespective of the configuration, which highlights
In-ConcReTeS’s focus on real-time predictability.

We further investigated if In-ConcReTeS can support smaller
periods. We evaluated with T ∈ {40ms, 30ms, 20ms, 10ms},
C = 3 and I = 4. For T = 40ms and T = 30ms, the results
remained the same. However, the success rates started dropping
at T = 20ms, and reached zero for T = 10ms.

Overall, the experiment highlights that In-ConcReTeS’s
design choices allow it to ensure interactive consistency
among periodic tasks at high frequencies, whereas commodity
datastores like Redis and etcd are not suitable for such
applications, because they are optimized for metrics like peak
throughput and average response times.

Experiment A2. We injected omission and corruption faults
and studied their effects on the execution times of IvPSim

and KVS tasks. We considered a single configuration in this
experiment, N = 4, C = 1, I = 4, and T = 50ms, and
conducted five experiment runs of 100s (2000 task iterations)
each. The first run executes fault-free. In the second run, the first
node fail-stops (i.e., it does not send or receive any messages).
In the third run, both first and second nodes fail-stop. In
the fourth run, no node fail-stops, but the first node lies by
presenting false data. Finally, in the fifth run, both first and
second nodes lie. The average execution times of all KVS
and IvPSim task activations on nodes 3 and 4 (which remain
fault-free throughout these five runs) are shown in Fig. 4. The
grey background denotes unsuccessful experiment runs.

We make three observations. First, as already noticed in
the previous experiment, the first run demonstrates the real-
time predictability of In-ConcReTeS. When there are no faults,
the KVS task execution times are small as well as extremely
predictable, largely due to our RT-EIGByz implementation,
which is optimized for periodic real-time workloads. Second,
since our fault-tolerant median requires at least three out of
four copies to compute the median, the success rates remain at
100 percent during the second and fourth runs when only one
node is faulty, but drop down to zero when more than one node
is faulty (note that a different choice of fuse function could
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Fig. 4. IvPSim Experiment A2 results.

ensure liveness in case of two fail-stop failures). Third, the
average execution time of each KVS task increases when faulty
nodes are unavailable, since RT-EIGByz must timeout during
every round before proceeding further. The timeout latency
must be accounted for when computing the WCET of the KVS
tasks. In contrast, when nodes lie, execution times are not
affected. Overall, the results demonstrate that In-ConcReTeS
remains predictable while being fault-tolerant.

B. Experiments with the Bosch Benchmark

In the second part, we evaluated In-ConcReTeS by emulating
real-world automotive workloads based on the benchmark
presented by Kramer et al. [41] from Robert Rosch GmbH.
Such automotive workloads consist of a set of periodic
functions, runnables, that communicate with each other and
with the rest of the system using messages and labels. They are
therefore quite apt to evaluate research on distributed real-time
systems. We start by describing our workload generator.

Workload generator. To be free of any intellectual property
concerns, the Bosch benchmark is anonymized. It does not
specify the definitions of runnables, labels, and messages
involved, nor does it specify their exact parameters, such as
the execution time profile and the period of each runnable,
or the size of each label. Instead, the benchmark reports
aggregate statistics summarizing how different time periods
are distributed among runnables, distributions of label sizes
and communication patterns, etc. We developed a parameter
generation tool that generates workload parameters adhering to
the statistical distributions in the Bosch benchmark, and then
emulated workloads based on these parameters.

The first step is to scale the number of runnables specified
in the benchmark by a (configurable) scale factor, fscale ,
generate as many runnable instances, and assign to each a
period in {1, 2, 5, 10, 50, 100, 200, 1000} (ms) based on the
given distribution (we ignore angle-synchronous periods, which
vary according to the rotation speed of the crankshaft).

The next step is to generate an execution time profile for each
runnable, consisting of its best-case, worst-case, and average-
case execution times (BCETs, WCETs, and ACETs). The
benchmark contains multiple constraints in the form of (a) the
minimum, maximum, and average ACET α−

pi , α
+
pi , and α̃pi

(respectively), (b) the minimum and maximum BCET/ACET
ratio g−β,pi and g+β,pi (respectively), and (c) the minimum and
maximum WCET/ACET ratio g−ω,pi and g+ω,pi (respectively)
among all runnables with period pi, which make this step
challenging. To ensure that all constraints are satisfied, we first
use a four parameter beta distribution for modeling the ACETs
based on (a),5 and then model the BCETs and WCETs based
on the constraints in (b) and (c), respectively. Runnables with
the same period are mapped to a single task.

As with runnables, the generator also scales the number
of labels specified in the benchmark by fscale . Each label is
assigned a size between 1 and 16 bytes based on the distribution
in the benchmark (more than 99% of labels in the benchmark
are 16 bytes or shorter; we therefore ignore larger sizes). Each
label can be either read-only, write-only, or read-write, and
each read-write label can be either inter-task or intra-task.6 We
used the distributions provided in the benchmark to classify
each label accordingly and map it to a reader and/or a writer.

Finally, since In-ConcReTeS cannot support all periods,
as shown in the previous set of experiments, we prune the
workload such that all runnables (and associated labels) with
periods smaller than a given Pmin are pruned.

Experiment setup. We followed the procedure explained
above to generate hundreds of workloads, using a scale factor
between fscale = 0.01 and fscale = 0.32 (we scale down
significantly since In-ConcReTeS is expected to consume a
large fraction of CPU). We emulated each workload using
periodic tasks with appropriate parameters and interfaced each
task with In-ConcReTeS’s read and write APIs for label access.
Based on initial profiling, we observed that when RT-EIGByz
is initialized to support hundreds of labels (keys), its ACET
frequently exceeds 10 ms. Therefore, we generated two sets of
workloads, where we set a lower bound of Pmin = 50ms and
Pmin = 100ms on the time periods, respectively.

Since the workload parameters were randomly generated,
the number of labels varied significantly between 100 and 5000
across instances, and not every instance consisted of runnables
with all possible time periods. One of our objectives is to
evaluate In-ConcReTeS when application tasks have varying
time periods. Hence, we shortlisted 8 workloads with Pmin =
50ms and 19 workloads with Pmin = 100ms for evaluation,
each of which includes runnables with all possible time periods
greater than or equal to Pmin . The shortlisted workloads with
Pmin = 50ms consist of up to 1000 labels, whereas workloads
with Pmin = 100ms consist of up to 2000 labels.

5The standardized beta distribution has two shape parameters a and b and is
defined over range [0, 1]. The generalized beta distribution has two additional
parameters c and d and is defined over range [c, d] [53, Section VII]. The
latter is suitable because the ACET distribution for runnables with period pi
must be defined over a custom range [α−

pi , α
+
pi ]. We configure a = 2, which

results in an asymmetric bell curve, and b = a× (α+
pi − α̃pi )/(α̃pi − α

−
pi ),

which ensures that the mean value of the distribution is indeed α̃pi . We do
not configure a = 1 since it results in α−

pi being the most likely execution
time (not a bell curve), and we also do not configure a > 2 since it results in
narrower bell curves with extremely predictable execution times.

6Inter-task labels are written and read by runnables in different tasks, whereas
intra-task labels are written and read by runnables in the same task.



TABLE I
WORKLOADS WITH A MINIMUM TIME PERIOD OF Pmin = 50ms

Labels Read success % KVS latency (ms)

Pi 1 Pi 2 Pi 3 Pi 4 ACET WCET

270 100.00 100.00 100.00 100.00 8.34 28.97
363 100.00 100.00 100.00 100.00 12.21 23.64
476 100.00 100.00 100.00 100.00 14.87 32.88
573 100.00 100.00 100.00 99.85 17.50 35.36
689 100.00 100.00 100.00 100.00 17.89 35.62
744 100.00 99.97 99.96 100.00 19.72 35.86
849 99.81 99.91 99.74 99.98 20.43 36.59
905 98.71 99.56 44.82 99.07 23.49 41.82

TABLE II
WORKLOADS WITH A MINIMUM TIME PERIOD OF Pmin = 100ms

Labels Read success % KVS latency (ms)

Pi 1 Pi 2 Pi 3 Pi 4 ACET WCET

190 99.65 100.00 100.00 100.00 11.77 49.89
231 99.92 100.00 99.71 100.00 28.10 51.77
395 97.17 100.00 99.98 100.00 28.86 55.11
482 100.00 100.00 99.96 100.00 30.90 57.70
572 99.88 100.00 100.00 100.00 34.30 60.53
663 99.83 100.00 100.00 100.00 36.83 62.79
774 100.00 100.00 100.00 100.00 34.92 64.47
835 100.00 100.00 100.00 100.00 28.39 65.24
979 99.83 100.00 99.25 99.83 38.23 67.17
1001 99.90 100.00 99.19 100.00 36.37 68.69
1157 100.00 100.00 100.00 100.00 37.72 68.31
1218 100.00 100.00 100.00 100.00 36.15 66.66
1320 100.00 99.81 99.92 100.00 42.53 69.61
1420 100.00 99.10 99.79 100.00 45.68 71.84
1531 100.00 97.67 99.77 100.00 47.66 73.94
1682 100.00 100.00 100.00 100.00 44.47 73.75
1712 100.00 100.00 100.00 100.00 49.64 78.64
1810 100.00 98.58 100.00 100.00 48.43 81.37
1986 100.00 100.00 100.00 99.94 47.13 81.21

For each workload, we pre-configured RT-EIGByz to work
with an appropriate number of labels. Since all runnables with
the same time period are mapped to the same periodic task,
each configuration consisted of up to four application tasks
with time periods 50 ms, 100 ms, 200 ms, and 1000 ms and one
KVS task per node. The tasks were assigned offsets based on an
inital profiling of their WCETs (as in the IvPSim experiments),
and were provisioned on a single core on their respective nodes.

Experiment results. Tables I and II reports the number of
labels, percentages of iterations during which all reads were
successful (reported separately for each node) and the average
ACET and the maximum WCET across all KVS tasks on all
nodes, for workloads with Pmin = 50ms and Pmin = 100ms
(respectively). The success rates for writes was always 100%,
and hence not shown in the tables.

Unlike the IvPSim experiment, reads were not always
successful. Some nodes occasionally failed to read a few key-
value pairs from In-ConcReTeS. This happens when the local
RT-EIGByz instance fails to publish a write, because it did not
receive sufficient communication from other nodes (which is

necessary for distributed agreement) before timeout. A read
failure does not necessarily imply an application failure. In the
case of a failed KVS read, the application may fall back on a
fresh value albeit from the unpublished datastore (i.e., which
is equivalent to its local state), and continue. Most control
systems can easily tolerate a few intermittent failed iterations,
where they rely on stale sensor values [49, 55].

We attribute the read failures in this experiment to the
occasionally high clock skews resulting from absence of
hardware timestamping and from interference between PTP and
In-ConcReTeS’s network I/O. Unlike the IvPSim experiment,
RT-EIGByz in this experiment is configured for larger labels
and for many more keys, resulting in a network-heavy workload.
Furthermore, in workloads with Pmin = 50ms, as we approach
1000 labels, there is not enough time for the application and
KVS tasks to complete within a 50 ms time period. These
factors may cause timeouts during RT-EIGByz’s execution,
which limits In-ConcReTeS’s ability to synchronize data across
all nodes on time, during every single iteration.

C. Discussion and Limitations

In-ConcReTeS’s design, specifically, mapping the BFT
protocol to a set of real-time tasks, enables checking either
statically or at admission time whether writes by application
tasks can be propagated to all replicas in time, i.e., whether each
write(k, tpub , v) is published by time tpub. Such an analysis
would rely on the task parameters and an upper bound on the
network latency; and the network latency in turn may depend
on factors such as the number of tasks, their periods, the
number and types of key-value pairs, and the publishing times
used by them; there is hence an inter-dependency between
the parameters. An end-to-end timing analysis may require
multiple iterations, e.g., as in the compositional performance
analysis approach by Diemer et al. [21]. We leave such a
formal timing analysis for future work. Currently, we take an
engineering approach where we rely on profiling and set the
WCET parameter of each task to two times its profiled WCET.

As mentioned before, in the absence of hardware
timestamping, the clock skew in our setup typically remains
around a few microseconds but occasionally spikes up to a
couple of hundred microseconds. Since the task parameters as
well as the publishing times are in the order of at least tens
of milliseconds, the clock skew in general does not interfere
with In-ConcReTeS’s performance. Hence, we do not consider
clock skews at runtime when interpreting publishing times
and data validity constraints as part of our KVS API. The
maximum clock skew can be considered instead during timing
analysis or during admission control. The spikes in the clock
skew however do affect the number of successful reads, but
we simply treat them as transient timing faults.

Unlike most cloud systems, which favor agreement at all
costs, In-ConcReTeS ensures by design that such transient
timing faults do not cause future or cascading deadline misses
by violating agreement in favor of timeliness. In other words, In-
ConcReTeS’s KVS task does not try to achieve consensus after
its deadline, it does not “publish” values for which distributed



agreement was delayed, and applications may experience read
failures when trying to read these values (as in the Bosch
experiments). Application tasks may use appropriate fail-safe
mechanisms to handle failed reads, such as relying on their
most recent local state [49, 55].

Several optimizations are possible to improve In-
ConcReTeS’s performance. The KVS task currently spins
during network I/O, which makes timing analysis easier, but
increases CPU utilization. To reduce its CPU utilization, the
KVS task can be split into round-specific tasks with relative
offsets based on network I/O latency. To further reduce the
CPU utilization, the KVS task frequency can be reduced further
such that it does not depend on the application task frequencies
anymore. In this case, writes by high frequency applications
will be synchronized only every few iterations; during the
remaining iterations, the KVS will simply return values from
the local datastore, offering limited fault tolerance.

VI. RELATED WORK

With the goal of safety certification, the avionics domain
has been the first to acknowledge and tackle the problem
of Byzantine fault tolerance in a systematic manner, while
also taking into account real-time constraints. Two prominent
fault-tolerant processor architectures developed as a result
include the Fault-Tolerant Multiprocessor (FTMP) [31] and the
Multiprocessor Architecture for Fault-Tolerance (MAFT) [34].
The MeshKin [64] and Reliable Optical Bus (ROBUS) [50]
architectures had similar objectives, but realized Byzantine
fault tolerance “inside” the communication bus instead. Other
architectures like Advanced Information Processing System
(AIPS) [42], Maintainable Real-Time System (MARS) [38],
SAFEbus architecture [32], and Time-Triggered Protocol
(TTP) [48] differ mainly in their placement and redundancy
strategies [63]. However, all these designs, including the recent
Ethernet standards for safety-critical applications, such as
TTEthernet [6] and AFDX/ARINC 664 [51], require custom
hardware, and hence are not readily applicable today.

There exists a plethora of work on Byzantine fault tolerance
in the cloud computing domain that focuses on general-purpose
systems, e.g., Rampart [59], SecureRing [35], Practical Byzan-
tine Fault Tolerance (PBFT) [18], Zyzzyva [39], Spinning [67],
Aardvark [19], Raft [54], Redundant Byzantine Fault Tolerance
(RBFT) [9], On-Demand Replica Consistency (ORDC) [22],
etc. These systems are designed with the objective of achieving
high throughput (e.g., by optimizing the fault-free scenario).
Properties like low latency and predictability are not always
achieved, which impedes their use for real-time systems.

Most of the recent work on Byzantine fault tolerance in
the real-time systems community has focused on analysis and
simulations. For example, Kozhaya et al. [40] and Gujarati
et al. [29] propose extensions to existing BFT protocols while
considering bounded delays, and evaluate failure probabilities
using both analyses and simulations. In fact, Gujarati et al.
[29] analyzed the same EIGByz algorithm that we use as a
specification for our RT-EIGByz implementation, but did not
evaluate any practical deployment issues, which is one of our

objectives in this paper. Roth and Haeberlen [60] also present a
probabilistic analysis, and argue when Byzantine fault tolerance
is unnecessary for real-time applications.

Recently, Li et al. [45] proposed methods to reduce the
latency of failure recovery in ZooKeeper [7]. However, they
focus on time-sensitive edge computing applications, not real-
time embedded applications (e.g., their proposal RT-ZooKeeper
is evaluated on edge hosts, each with eight CPUs, 64GB
memory, and 1TB disk space). Loveless et al.’s work [47]
on improving the latency of distributed agreement in BFT state
machine replication through eager executions on multicores is
closest to our work. In-ConcReTeS’s high-level objectives are
different though, since it also focuses on the programming API
for control application developers, and prefers a leader-less
BFT algorithm to avoid reliability bottlenecks.

Verı́ssimo et al. [65, 66] did not focus on Byzantine fault
tolerance per se, but proposed a programming paradigm where
a small fault-tolerant timely computing base can be used
reliably by any component that requires synchrony. Casimiro
et al. [15, 16] later used this approach to implement a distributed
system with dependable quality-of-service guarantees, and
discussed an implementation using Linux [17]. In principle,
In-ConcReTeS can be redesigned based on their proposal.
However, we conjecture it suffices to use clock synchronization
protocols such as PTP as the timely computing base, as in
this work. Of course, the clock synchronization protocol itself
will need to be strengthened using fault tolerance primitives so
that it becomes analogous to the timely computing base model
assumed by Verı́ssimo and Casimiro (which is future work).

VII. CONCLUSION

We have presented a BFT key-value datastore In-ConcReTeS
with support for periodic applications, real-time predictability,
and low latency on commodity embedded platforms.

In-ConcReTeS’s design is based on the key principle that if
the application is known, a replica coordination service need not
be designed for arbitrary workloads, but instead should make
application-specific choices that lead to maximum efficiency.
By making design choices around the needs of periodic real-
time applications (e.g., time-aware API, statically allocated
data structures, predetermined batch sizes), In-ConcReTeS is
able to outperform generic datastores like Redis and etcd,
which offer plenty of configuration options for throughput-
oriented applications, but hardly any relating to predictability
or periodicity. Depending on the hardware available and the
applications that need to be synchronized, In-ConcReTeS may
be used in a soft or a hard real-time setting, and as a replica
coordinator or a fault-tolerant key-value store.

Given that In-ConcReTeS is modeled off the classic real-time
task model, it would be interesting to evaluate the possibility of
deploying In-ConcReTeS on real-time operating systems, such
as FreeRTOS or Zephyr, using their real-time task APIs. This
would also make it more amenable to WCET and schedulability
analysis, which is desired to make it certification-friendly. We
leave these extensions to future work.
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