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This paper in a nutshell …

In-ConcReTeS 
Distributed key-value store 
Time-sensitive, fault-tolerant replica coordination 

Random environmentally induced faults
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Embedded Systems are Susceptible to Transient Faults

Harsh environments

Electric motors, spark plugs inside automobiles

Industrial systems and robots operating under hard radiation and near high power machinery

Transient faults or bit flips in registers, buffers, and networks

For example, with 1 bit flip in a 1 MB SRAM every 1012 hours of operation

and 0.5 billion cars with an average daily operation time of 5%

about 5000 cars may be affected by a bit flip every day!*

4

* Mancuso. “Next-Generation Safety-Critical Systems on Multi-Core Platforms.” PhD Thesis, UIUC (2017)
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Transient Faults can lead to Errors and Failures
Transmission errors


Faults in the network


Omission errors

Fault-induced kernel panics, hangs


Incorrect computation errors

Faults in memory buffers


Byzantine / inconsistent broadcast errors*

Faults in distributed systems
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* Driscoll et al. “Byzantine Fault Tolerance, from Theory to Reality.” SAFECOMP (2003)
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A

B

OutputInput

Example: Safety-critical control systems can fail in 
both time and value domains

Incorrect, delayed, 
or skipped

Many influential avionics domain architectures in the 80s and 90s designed 
for safety-critical real-time systems addressed this problem in depth!
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Multiprocessor Architecture for Fault Tolerance (MAFT)*
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* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)



Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity 
check

Freq.

80 Hz

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)



Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity 
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour


Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)



Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity 
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour


Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

1. Active replication on APsOC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)



Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity 
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour


Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

1. Active replication on APs

2. Replica coordination on OCs 
after every task 

Byzantine fault tolerance (BFT)

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)

BFT1 BFT5

BFT2 BFT6

BFT3 BFT7

BFT4 BFT8

Yaw

Roll

Pitch

Monitor



Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity 
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour


Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation 
controllers (OCs) for 
voting, scheduling, 
synchronization, etc.

1. Active replication on APs

2. Replica coordination on OCs 
after every task 

Byzantine fault tolerance (BFT)

3. End-to-end timing analysis 
Considering application tasks & 
replica coordination services

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application 
processors (APs)

BFT1 BFT5

BFT2 BFT6

BFT3 BFT7

BFT4 BFT8

Yaw

Roll

Pitch

Monitor



Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1
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Like MAFT, can we realize 
replica coordination with Byzantine fault tolerance (BFT) 
for real-time workloads in low-cost consumer CPS?
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BFT Replica Coordination for CPS

8

Few domains use custom hardware

Let alone for Byzantine fault tolerance

Best-effort, throughput-oriented BFT libraries are not suitable

Performance suffers on resource-constrained embedded device or in terms of predictability

3. Easy to integrate with existing control applications

1. Focused on BFT with 
real-time predictability

Easy to build a drone using off-the-shelf 
hardware and open-source software

But no BFT solutions that can be retrofitted onto 
these real-time platforms
2. Deployable on COTS platforms like 

Raspberry Pis and Ethernet

CIn-ConcReTeS
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How does In-ConcReTeS compare against well-known KVS?

Can In-ConcReTeS deal with complex distributed 
real-time workloads?
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Setup
Four Raspberry Pi 4 Model B units


Cortex A72 quad-core processor

4GB memory

Raspbian GNU/Linux 10

Ethernet

Clock synchronization using ptp4l

Highest real-time priority

Uses a separate virtual network interface

Software time-stamping
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CRedis and etcd are not build for timeliness 
on the timescales encountered in CPS
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Keys

Successful replica coordination for 
more complex workloads

WCET closer to 50ms, which is 
also the Tmin, results in little slack 
and increased deadline violations

CIncreasing the #keys pushes In-ConcReTeS on 
the Raspberry Pi cluster to its limits!
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Gathering 

Byzantine 
faults

Backend

RT-EIGByz: implementation 
of EIGByz for Real-Time

PTP Clock 
Synchronization

Networking

Boost async API with 
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

write(k4, t8, v9) 1 2

4

3

Instance on 
node 2

5

6read(k4, t8, v9)

https://github.com/ubc-systopia/inconcretes.git

Thank you! 
Questions?

https://github.com/ubc-systopia/inconcretes.git

