
Arpan Gujarati and Ningfeng Yang (UBC)
Björn Brandenburg (MPI-SWS)

In-ConcReTeS
Interactive Consistency meets 
Distributed Real-Time Systems, Again!

Arpan Gujarati | 7 Dec 2022 | RTSS

This paper in a nutshell …

In-ConcReTeS
Distributed key-value store
Time-sensitive, fault-tolerant replica coordination

Random environmentally induced faults

2

Motivation

Arpan Gujarati | 7 Dec 2022 | RTSS

Embedded Systems are Susceptible to Transient Faults

Harsh environments

Electric motors, spark plugs inside automobiles

Industrial systems and robots operating under hard radiation and near high power machinery

4

Arpan Gujarati | 7 Dec 2022 | RTSS

Embedded Systems are Susceptible to Transient Faults

Harsh environments

Electric motors, spark plugs inside automobiles

Industrial systems and robots operating under hard radiation and near high power machinery

Transient faults or bit flips in registers, buffers, and networks

For example, with 1 bit flip in a 1 MB SRAM every 1012 hours of operation

and 0.5 billion cars with an average daily operation time of 5%

about 5000 cars may be affected by a bit flip every day!*

4

* Mancuso. “Next-Generation Safety-Critical Systems on Multi-Core Platforms.” PhD Thesis, UIUC (2017)

Arpan Gujarati | 7 Dec 2022 | RTSS

Transient Faults can lead to Errors and Failures
Transmission errors

Faults in the network

Omission errors

Fault-induced kernel panics, hangs

Incorrect computation errors

Faults in memory buffers

Byzantine / inconsistent broadcast errors*

Faults in distributed systems

5

* Driscoll et al. “Byzantine Fault Tolerance, from Theory to Reality.” SAFECOMP (2003)

Arpan Gujarati | 7 Dec 2022 | RTSS

Transient Faults can lead to Errors and Failures
Transmission errors

Faults in the network

Omission errors

Fault-induced kernel panics, hangs

Incorrect computation errors

Faults in memory buffers

Byzantine / inconsistent broadcast errors*

Faults in distributed systems

5

* Driscoll et al. “Byzantine Fault Tolerance, from Theory to Reality.” SAFECOMP (2003)

A

B

OutputInput

Example: Safety-critical control systems can fail in
both time and value domains

Incorrect, delayed,
or skipped

Arpan Gujarati | 7 Dec 2022 | RTSS

Transient Faults can lead to Errors and Failures
Transmission errors

Faults in the network

Omission errors

Fault-induced kernel panics, hangs

Incorrect computation errors

Faults in memory buffers

Byzantine / inconsistent broadcast errors*

Faults in distributed systems

5

* Driscoll et al. “Byzantine Fault Tolerance, from Theory to Reality.” SAFECOMP (2003)

A

B

OutputInput

Example: Safety-critical control systems can fail in
both time and value domains

Incorrect, delayed,
or skipped

Many influential avionics domain architectures in the 80s and 90s designed
for safety-critical real-time systems addressed this problem in depth!

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity
check

Freq.

80 Hz

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

1. Active replication on APsOC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

1. Active replication on APs

2. Replica coordination on OCs
after every task

Byzantine fault tolerance (BFT)

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

BFT1 BFT5

BFT2 BFT6

BFT3 BFT7

BFT4 BFT8

Yaw

Roll

Pitch

Monitor

Arpan Gujarati | 7 Dec 2022 | RTSS

Multiprocessor Architecture for Fault Tolerance (MAFT)*

6

* Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Simple periodic

real-time workload

Task1 Task5

Task2 Task6

Task3 Task7

Task4 Task8

Yaw

Roll

Pitch

Monitor

Task9

Validity
check

Freq.

80 Hz

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Custom operation
controllers (OCs) for
voting, scheduling,
synchronization, etc.

1. Active replication on APs

2. Replica coordination on OCs
after every task

Byzantine fault tolerance (BFT)

3. End-to-end timing analysis
Considering application tasks &
replica coordination services

OC1

Fully connected 
broadcast network

OC6OC2 …

AP1

Application-specific 
I/O network

AP6AP2 …

Sensors Actuators

General-purpose 
application
processors (APs)

BFT1 BFT5

BFT2 BFT6

BFT3 BFT7

BFT4 BFT8

Yaw

Roll

Pitch

Monitor

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

7

1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

7

1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Airplanes Autonomous
vehicles

Surgical
robots

Drones,
robot arms

#Accidents / mission

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

7

1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Operating
hours

Airplanes

Autonomous
vehicles Surgical

robots

Drones,
robot arms

#Accidents / mission

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

As these CPS permeate our everyday lives

… their cumulative operating times are increasing2

7

2 SESAR Joint Undertaking. “European Drones Outlook Study-Unlocking the value for Europe.” SESAR, Brussels (2016)
1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Operating
hours

Airplanes

Autonomous
vehicles Surgical

robots

Drones,
robot arms

No. of failure
events across
fleets of CPS will
rise proportionally

#Accidents / mission

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

As these CPS permeate our everyday lives

… their cumulative operating times are increasing2

7

2 SESAR Joint Undertaking. “European Drones Outlook Study-Unlocking the value for Europe.” SESAR, Brussels (2016)
1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Operating
hours

Airplanes

Autonomous
vehicles Surgical

robots

Drones,
robot arms

No. of failure
events across
fleets of CPS will
rise proportionally

#Accidents / mission

Goal: Make low-cost
consumer CPS more reliable

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

As these CPS permeate our everyday lives

… their cumulative operating times are increasing2

7

2 SESAR Joint Undertaking. “European Drones Outlook Study-Unlocking the value for Europe.” SESAR, Brussels (2016)
1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Operating
hours

Airplanes

Autonomous
vehicles Surgical

robots

Drones,
robot arms

No. of failure
events across
fleets of CPS will
rise proportionally

#Accidents / mission

Goal: Make low-cost
consumer CPS more reliable

C

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Arpan Gujarati | 7 Dec 2022 | RTSS

Not all CPS are engineered as reliably as airplanes1

Contemporary CPS, e.g., autonomous vehicles, drones, robot arms, surgical robots, etc.

Inexpensive but unreliable commercial off-the-shelf (COTS) hardware

Inadequate resources (developer hours, computing power, component costs)

Time to market pressures!

As these CPS permeate our everyday lives

… their cumulative operating times are increasing2

7

2 SESAR Joint Undertaking. “European Drones Outlook Study-Unlocking the value for Europe.” SESAR, Brussels (2016)
1 Banerjee et al. “Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data.” DSN (2018)

Operating
hours

Airplanes

Autonomous
vehicles Surgical

robots

Drones,
robot arms

No. of failure
events across
fleets of CPS will
rise proportionally

#Accidents / mission

Goal: Make low-cost
consumer CPS more reliable

C

Reliability goals

Pfail < 10-10 / hour

Tolerate

crashes,

corruptions,

omissions, …

Byzantine faults

Like MAFT, can we realize
replica coordination with Byzantine fault tolerance (BFT)
for real-time workloads in low-cost consumer CPS?

Arpan Gujarati | 7 Dec 2022 | RTSS

BFT Replica Coordination for CPS

8

Few domains use custom hardware

Let alone for Byzantine fault tolerance

Arpan Gujarati | 7 Dec 2022 | RTSS

BFT Replica Coordination for CPS

8

Few domains use custom hardware

Let alone for Byzantine fault tolerance

Easy to build a drone using off-the-shelf
hardware and open-source software

But no BFT solutions that can be retrofitted onto
these real-time platforms

Arpan Gujarati | 7 Dec 2022 | RTSS

BFT Replica Coordination for CPS

8

Few domains use custom hardware

Let alone for Byzantine fault tolerance

Best-effort, throughput-oriented BFT libraries are not suitable

Performance suffers on resource-constrained embedded device or in terms of predictability

Easy to build a drone using off-the-shelf
hardware and open-source software

But no BFT solutions that can be retrofitted onto
these real-time platforms

Arpan Gujarati | 7 Dec 2022 | RTSS

BFT Replica Coordination for CPS

8

Few domains use custom hardware

Let alone for Byzantine fault tolerance

Best-effort, throughput-oriented BFT libraries are not suitable

Performance suffers on resource-constrained embedded device or in terms of predictability

3. Easy to integrate with existing control applications

1. Focused on BFT with 
real-time predictability

Easy to build a drone using off-the-shelf
hardware and open-source software

But no BFT solutions that can be retrofitted onto
these real-time platforms
2. Deployable on COTS platforms like

Raspberry Pis and Ethernet

CIn-ConcReTeS

Design and Implementation

Overview

10

Embedded platform
(node 1)

Periodic control
tasks

Overview

Fault tolerance / replica coordination

Data sharing

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Instance on
node 2

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1

Instance on
node 21) Tasks periodically write critical data to

Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

Instance on
node 2

2) Backend periodically empties Unpublished

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

2) Backend periodically empties Unpublished
3, 4) Backend coordinates with remote nodes so that all 
 replicas agree on the same set of values

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

2) Backend periodically empties Unpublished
3, 4) Backend coordinates with remote nodes so that all 
 replicas agree on the same set of values
5) Backend adds final “agreed-upon-by-all” values to Published

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

2) Backend periodically empties Unpublished
3, 4) Backend coordinates with remote nodes so that all 
 replicas agree on the same set of values
5) Backend adds final “agreed-upon-by-all” values to Published

6) Tasks read values from Published

in their next periodic iteration

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

CHow does In-ConcReTeS
ensure timing?

2) Backend periodically empties Unpublished
3, 4) Backend coordinates with remote nodes so that all 
 replicas agree on the same set of values
5) Backend adds final “agreed-upon-by-all” values to Published

6) Tasks read values from Published

in their next periodic iteration

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Overview

Fault tolerance / replica coordination

Data sharing

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

10

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

CHow does In-ConcReTeS
ensure timing?

2) Backend periodically empties Unpublished
3, 4) Backend coordinates with remote nodes so that all 
 replicas agree on the same set of values
5) Backend adds final “agreed-upon-by-all” values to Published

6) Tasks read values from Published

in their next periodic iteration

1) Tasks periodically write critical data to
Unpublished along with respective publishing times

Arpan Gujarati | 7 Dec 2022 | RTSS

Key Idea 1: Time-aware Key-value API inspired by LET*

11

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

Key Idea 1: Time-aware Key-value API inspired by LET*

11

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

Key Idea 1: Time-aware Key-value API inspired by LET*

11

Reads impose data freshness

“time” limits the age of the oldest value
that can be accepted by a successful read

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

Key Idea 1: Time-aware Key-value API inspired by LET*

11

Reads impose data freshness

“time” limits the age of the oldest value
that can be accepted by a successful read

Writes ensure temporal determinism

“time” indicates the publishing time, when the
value should become visible to all applications

Decouples the time of data production from its
availability in a predictable manner

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

Key Idea 1: Time-aware Key-value API inspired by LET*

11

Clock synchronization ensures
publishing times are meaningful across
distributed nodes

Reads impose data freshness

“time” limits the age of the oldest value
that can be accepted by a successful read

Writes ensure temporal determinism

“time” indicates the publishing time, when the
value should become visible to all applications

Decouples the time of data production from its
availability in a predictable manner

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

API enables static analysis as it
informs about the time budget available
for replica coordination

Key Idea 1: Time-aware Key-value API inspired by LET*

11

Clock synchronization ensures
publishing times are meaningful across
distributed nodes

Reads impose data freshness

“time” limits the age of the oldest value
that can be accepted by a successful read

Writes ensure temporal determinism

“time” indicates the publishing time, when the
value should become visible to all applications

Decouples the time of data production from its
availability in a predictable manner

* Kirsch and Sokolova. “The Logical Execution Time Paradigm.” 
 Advances in Real-Time Systems (2012)

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz
Real-time periodic tasks → deterministic scheduling

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz
Real-time periodic tasks → deterministic scheduling
1D, contiguous memory layout of EIG trees → fast reads and writes

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz
Real-time periodic tasks → deterministic scheduling
1D, contiguous memory layout of EIG trees → fast reads and writes
Static allocation parameterized in #nodes, #rounds → predictability

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz
Real-time periodic tasks → deterministic scheduling
1D, contiguous memory layout of EIG trees → fast reads and writes
Static allocation parameterized in #nodes, #rounds → predictability
TCP with timeouts → timeliness, prevents cascading failures

Arpan Gujarati | 7 Dec 2022 | RTSS

1 Kieckhafer et al. “The MAFT Architecture for Distributed Fault Tolerance.” IEEE Transactions on Computers (1988)

Key Idea 2: Interactive Consistency1 → EIGByz2 → RT-EIGByz

12

2 Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)

[]v1, 1

v1, 2

v1, 3

Node 1 Node 2

[]v2, 1

v2, 2

v2, 3

Node 3

[]v3, 1

v3, 2

v3, 3

All nodes agree on this

[]v1
v2
v3

Interactive
Consistency

Application-specific
voting function vfinal

, ,

Byzantine agreement problem

Consensus over a vector of data

Enables application-specific voting, 
such as using median or weighted mean

Synchronous leader-free protocol
for interactive consistency

EIG trees

Clock synchronization

Deterministic rounds

Predictable real-time friendly implementation of EIGByz
Real-time periodic tasks → deterministic scheduling
1D, contiguous memory layout of EIG trees → fast reads and writes
Static allocation parameterized in #nodes, #rounds → predictability
TCP with timeouts → timeliness, prevents cascading failures
Batching → multiples keys

Arpan Gujarati | 7 Dec 2022 | RTSS

Implementation

13

Arpan Gujarati | 7 Dec 2022 | RTSS

Implementation
RT-EIGByz realized as a single-threaded real-time periodic task

Implemented in C++ using Linux’s clock_gettime and clock_nanosleep APIs

13

Arpan Gujarati | 7 Dec 2022 | RTSS

Implementation
RT-EIGByz realized as a single-threaded real-time periodic task

Implemented in C++ using Linux’s clock_gettime and clock_nanosleep APIs
Unique In-ConcReTeS instance per core

13

0 1 2 3

Instance
0

Instance
1

Instance
2

Instance
3

Arpan Gujarati | 7 Dec 2022 | RTSS

Implementation
RT-EIGByz realized as a single-threaded real-time periodic task

Implemented in C++ using Linux’s clock_gettime and clock_nanosleep APIs
Unique In-ConcReTeS instance per core

Control applications
Also modelled as single-threaded 
real-time periodic tasks
Interface with core-local instances

13

0 1 2 3

Instance
0

Instance
1

Instance
2

Instance
3

Periodic
control tasks

Arpan Gujarati | 7 Dec 2022 | RTSS

Implementation
RT-EIGByz realized as a single-threaded real-time periodic task

Implemented in C++ using Linux’s clock_gettime and clock_nanosleep APIs
Unique In-ConcReTeS instance per core

Control applications
Also modelled as single-threaded 
real-time periodic tasks
Interface with core-local instances

13

0 1 2 3

Instance
0

Instance
1

Instance
2

Instance
3

Periodic
control tasks

Leave one core idle
for kernel and
networking utilities

Evaluation

Arpan Gujarati | 7 Dec 2022 | RTSS

Questions

15

How does In-ConcReTeS compare against well-known KVS?

Can In-ConcReTeS deal with complex distributed
real-time workloads?

Arpan Gujarati | 7 Dec 2022 | RTSS

Setup
Four Raspberry Pi 4 Model B units

Cortex A72 quad-core processor

4GB memory

Raspbian GNU/Linux 10

Ethernet

16

Arpan Gujarati | 7 Dec 2022 | RTSS

Setup
Four Raspberry Pi 4 Model B units

Cortex A72 quad-core processor

4GB memory

Raspbian GNU/Linux 10

Ethernet

Clock synchronization using ptp4l

Highest real-time priority

Uses a separate virtual network interface

Software time-stamping

16

Arpan Gujarati | 7 Dec 2022 | RTSS

Questions

17

How does In-ConcReTeS compare against well-known KVS?

Can In-ConcReTeS deal with complex distributed
real-time workloads?

Arpan Gujarati | 7 Dec 2022 | RTSS

Baselines

18

Arpan Gujarati | 7 Dec 2022 | RTSS

In-memory data store

Baselines

18

Arpan Gujarati | 7 Dec 2022 | RTSS

In-memory data store

Single-threaded C server

Not designed to benefit from multiple cores

Like Achal, one instance per each core, on each Pi

Baselines

18

Arpan Gujarati | 7 Dec 2022 | RTSS

In-memory data store

Single-threaded C server

Not designed to benefit from multiple cores

Like Achal, one instance per each core, on each Pi

No fault tolerance by default

“Replicated” config has lazy semantics, not useful for CPS

For fault tolerance, we query Redis instances on all nodes
at read time

Baselines

18

Query all
nodes 

at read time

Arpan Gujarati | 7 Dec 2022 | RTSS

In-memory data store

Single-threaded C server

Not designed to benefit from multiple cores

Like Achal, one instance per each core, on each Pi

No fault tolerance by default

“Replicated” config has lazy semantics, not useful for CPS

For fault tolerance, we query Redis instances on all nodes
at read time

Baselines

18

Strongly consistent, distributed
Written in Go

Raft Consensus for fault tolerance

Single instance on each Pi

Query all
nodes 

at read time

Arpan Gujarati | 7 Dec 2022 | RTSS

In-memory data store

Single-threaded C server

Not designed to benefit from multiple cores

Like Achal, one instance per each core, on each Pi

No fault tolerance by default

“Replicated” config has lazy semantics, not useful for CPS

For fault tolerance, we query Redis instances on all nodes
at read time

Baselines

18

Strongly consistent, distributed
Written in Go

Raft Consensus for fault tolerance

Single instance on each Pi

Query all
nodes 

at read time

Periodic control
tasksCore-local

proxies

Core-local
proxies

C
Mimic In-ConcReTeS’s
real-time periodic task
model, time-aware API

Arpan Gujarati | 7 Dec 2022 | RTSS

Workload: Inverted Pendulum Simulation*

19

* Morgado. https://gmagno.users.sourceforge.net/InvertedPendulum.htm (2011)

https://gmagno.users.sourceforge.net/InvertedPendulum.htm

Arpan Gujarati | 7 Dec 2022 | RTSS

Prototypical control application

IvPSim

Periodic real-time task

Reads and writes 19 floats to the datastore

Time period can be adjusted

Workload: Inverted Pendulum Simulation*

19

* Morgado. https://gmagno.users.sourceforge.net/InvertedPendulum.htm (2011)

https://gmagno.users.sourceforge.net/InvertedPendulum.htm

Arpan Gujarati | 7 Dec 2022 | RTSS

Prototypical control application

IvPSim

Periodic real-time task

Reads and writes 19 floats to the datastore

Time period can be adjusted

Objective

Run replicas of IvPSim on separate nodes synchronously

Workload: Inverted Pendulum Simulation*

19

* Morgado. https://gmagno.users.sourceforge.net/InvertedPendulum.htm (2011)

https://gmagno.users.sourceforge.net/InvertedPendulum.htm

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

20 configurations

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

C = 1 core C = 3 cores

20 configurations

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

20 configurations

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

20 configurations

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

Su
cc

es
sf

ul
 It

er
at

io
n

%

20 configurations

Evaluation metrics
For read operations, percentage of IvPSim iterations during which all reads succeeded

Respectively, for writes …

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

Su
cc

es
sf

ul
 It

er
at

io
n

%

20 configurations

Evaluation metrics
For read operations, percentage of IvPSim iterations during which all reads succeeded

Respectively, for writes …

Higher
is better!

Log
scale

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

In-ConcReTeS (writes)In-ConcReTeS (reads)

Su
cc

es
sf

ul
 It

er
at

io
n

%

In-ConcReTeS success rate is 100%

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

In-ConcReTeS (writes)In-ConcReTeS (reads) Redis (writes)Redis (reads)

Su
cc

es
sf

ul
 It

er
at

io
n

%

I = 4 IvPSim tasks / core I = 4 IvPSim tasks / core
In-ConcReTeS success rate is 100%
Redis underperforms when I = 4

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

In-ConcReTeS (writes)In-ConcReTeS (reads) Redis (writes)Redis (reads) etcd (writes)etcd (reads)

Su
cc

es
sf

ul
 It

er
at

io
n

%

In-ConcReTeS success rate is 100%
Redis underperforms when I = 4
etcd almost always underperforms

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

20

In-ConcReTeS (writes)In-ConcReTeS (reads) Redis (writes)Redis (reads) etcd (writes)etcd (reads)

Su
cc

es
sf

ul
 It

er
at

io
n

%

In-ConcReTeS success rate is 100%
Redis underperforms when I = 4
etcd almost always underperforms

CRedis and etcd are not build for timeliness
on the timescales encountered in CPS

Arpan Gujarati | 7 Dec 2022 | RTSS

Questions

21

How does In-ConcReTeS compare against well-known KVS?

Can In-ConcReTeS deal with complex distributed
real-time workloads?

Arpan Gujarati | 7 Dec 2022 | RTSS 22

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS 22

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS

Generated multiple random workload instances
Mix of tasks with time periods in {50, 100, 200, 1000} ms

Number of keys between 100 and 1000

Value sizes ranging from 1 to 16 bytes

23

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS

Generated multiple random workload instances
Mix of tasks with time periods in {50, 100, 200, 1000} ms

Number of keys between 100 and 1000

Value sizes ranging from 1 to 16 bytes

Objective: Run workload replicas on separate nodes synchronously

23

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS

Generated multiple random workload instances
Mix of tasks with time periods in {50, 100, 200, 1000} ms

Number of keys between 100 and 1000

Value sizes ranging from 1 to 16 bytes

Objective: Run workload replicas on separate nodes synchronously

Setup: Single core experiments, no redis or etcd

23

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS

Generated multiple random workload instances
Mix of tasks with time periods in {50, 100, 200, 1000} ms

Number of keys between 100 and 1000

Value sizes ranging from 1 to 16 bytes

Objective: Run workload replicas on separate nodes synchronously

Setup: Single core experiments, no redis or etcd

Metrics: Successful iteration % for read operations

Writes to the local unpublished datastore are always successful

23

* Kramer et al. “Real World Automotive Benchmarks for Free.” WATERS (2015)

Workload: Real-Automotive Benchmark from Bosch*

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

24

Keys

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

24

Keys

Successful replica coordination for
more complex workloads

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

24

Keys

Successful replica coordination for
more complex workloads

WCET closer to 50ms, which is
also the Tmin, results in little slack
and increased deadline violations

Arpan Gujarati | 7 Dec 2022 | RTSS

Results

24

Keys

Successful replica coordination for
more complex workloads

WCET closer to 50ms, which is
also the Tmin, results in little slack
and increased deadline violations

CIncreasing the #keys pushes In-ConcReTeS on
the Raspberry Pi cluster to its limits!

Arpan Gujarati | 7 Dec 2022 | RTSS

Summary

25

Fault tolerance / replica coordination

Data sharing

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Arpan Gujarati | 7 Dec 2022 | RTSS

Summary

25

Fault tolerance / replica coordination

Data sharing

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

Arpan Gujarati | 7 Dec 2022 | RTSS

By making design choices around the needs of periodic real-time applications

In-ConcReTeS is able to outperform generic datastores such as redis and etcd

Summary

25

Fault tolerance / replica coordination

Data sharing

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

Arpan Gujarati | 7 Dec 2022 | RTSS

By making design choices around the needs of periodic real-time applications

In-ConcReTeS is able to outperform generic datastores such as redis and etcd

Summary

25

Fault tolerance / replica coordination

Data sharing

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

https://github.com/ubc-systopia/inconcretes.git

https://github.com/ubc-systopia/inconcretes.git

Arpan Gujarati | 7 Dec 2022 | RTSS

By making design choices around the needs of periodic real-time applications

In-ConcReTeS is able to outperform generic datastores such as redis and etcd

Summary

25

Fault tolerance / replica coordination

Data sharing

Embedded platform
(node 1)

Periodic control
tasks

Periodic control
tasks

Replicas of
tasks on
node 1

Distinct
from tasks
on node 1

Embedded platform
(node 2)

Specification: EIGByz
Exponential
Information
Gathering

Byzantine
faults

Backend

RT-EIGByz: implementation
of EIGByz for Real-Time

PTP Clock
Synchronization

Networking

Boost async API with
timeouts + TCP

(k1, t6, v5)

(k1, t7, v6)

(k2, t7, v7)

(k3, t7, v8)

(k4, t8, v9)

Published

(k2, t7, v7)

(k3, t7, v8)

(k3, t7, v8)

Unpublished
In-ConcReTeS instance on node 1

write(k4, t8, v9) 1 2

4

3

Instance on
node 2

5

6read(k4, t8, v9)

https://github.com/ubc-systopia/inconcretes.git

Thank you!
Questions?

https://github.com/ubc-systopia/inconcretes.git

