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Abstract—NVIDIA Holoscan SDK is a novel edge and embedded
software development framework designed for NVIDIA System-
on-Chips (SoCs), primarily targeting medical device applications.
This SDK facilitates complex data processing workflows using
Directed Acyclic Graphs (DAGs) composed of functional units
termed operators. These operators, running in separate threads,
are usually interconnected with intricate execution dependencies
influenced by both upstream and downstream conditions on
communication data buffers. Current methods to measure
the response time of a complex Holoscan application rely on
empirical benchmarking, which can be costly, time-consuming,
and unreliable – limitations that are particularly critical in sectors
where safety and certification concerns are paramount.

This paper introduces a novel static analysis methodology
to determine worst-case end-to-end response times in NVIDIA
Holoscan applications. Our approach overcomes the drawbacks
of existing empirical tools by providing a response-time analysis
capable of handling complex operator interactions and communi-
cation buffering mechanisms inherent in Holoscan’s architecture.
Through rigorous theoretical analysis and empirical validation,
our method not only ensures predictability in system behavior but
also aids developers in identifying performance bottlenecks and
optimizing system design. Evaluation using real-world NVIDIA
HoloHub applications demonstrates the efficiency and accuracy
of our analysis, achieving theoretical response times as close as
0.3% of empirically measured numbers on NVIDIA hardware
using less than 1ms computation time.

I. INTRODUCTION

The medical devices industry is increasingly adopting
powerful edge and embedded computing platforms to meet
the growing demand for computation power and real-time
processing of streaming sensor data. Modern devices support
complex workflows and are designed to be deployed on the
premises of hospitals and medical care facilities, such that they
can last for over a decade. NVIDIA Holoscan [1] is one such
platform that is gaining traction across the industry [2, 3].

The Holoscan SDK [1] is a software development framework
for ARM-based SoCs manufactured by NVIDIA, such as AGX
and IGX Orin [4]. It presents a unique programming model that
facilitates a highly modular application development to help
medical device application developers program complex inter-
connected workflows. The model composes individual function
blocks (as vertices) into a Directed Acyclic Graph (DAG).
The vertices (known as operators in Holoscan) run as threads
and the edges govern data flow and dependencies between the
vertices. The operators can be reused across applications.

Holoscan’s programming model enables rapid prototyping
and development of applications for an eventual production-
grade deployment. However, the intertwined architecture of
queues, queue conditions, and operators in different threads
complicates the analysis of a Holoscan application’s behavior.
For instance, Holoscan supports data transfers between opera-
tors through double-buffered queues and imposes restrictions on
the execution of operators based on the status of these queues.
Currently, Holoscan relies on empirical tools, such as the Data
Flow Tracking feature [5], to measure end-to-end latency of a
Holoscan application. As shown in Section III, such empirical
tools are dependent on and limited by the testing setup and
duration. In the regulated medical devices sector, deriving a
static response-time analysis for Holoscan applications is highly
desirable but missing.

Holoscan’s application framework does not conform to well-
known system models, such as existing real-time scheduling
models for DAG tasks. The closest model is synchronous
dataflow (SDF), but existing response-time analyses for SDF [6–
9] cannot account for the use of queues and restrictions on
operator execution based on communication buffer states found
in Holoscan. Our paper is the first attempt to bound the worst-
case end-to-end response time for any item (e.g., a video frame)
within Holoscan’s streaming workflow model, considering
blocking due to communication buffer constraints.

We evaluate our analysis using example application struc-
tures from NVIDIA HoloHub [10], a community-populated
repository for Holoscan applications. For comparison, we
use empirical results from the Holoscan Data Flow Tracking
feature on NVIDIA hardware and simulated results on a
simplified Holoscan application runtime model. Evaluation
results demonstrate that our analysis is efficient, taking less than
1ms to process the small DAGs used in Holoscan, and closely
bounds approximate empirical results for most variations of
the eight tested DAG application structures in HoloHub.

II. HOLOSCAN INTERNALS

The Holoscan SDK’s execution backend, called the Graph
Execution Framework (GXF) [11] (also developed by NVIDIA)
handles scheduling, data transfers, and synchronization of
Holoscan operators. This paper analyzes the Holoscan SDK
source code and the GXF C++ header files (both of which are
open-source) in order to model Holoscan’s internal design and
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Fig. 1. Illustration of Holoscan internals using an endoscopy tool tracking application. The application is composed of five functional blocks, which are
combined in the form of a DAG, as shown in the top part of the figure. The interaction between the Format Converter and LSTM TensorRT Inference operators
is highlighted to illustrate the key Holoscan components underlying the DAG. The two operators share a FIFO queue between them. Format Converter is
subject to a downstream condition, which means that it cannot start processing a new input if there is no space in the (output) FIFO queue. LSTM TensorRT
Inference is subject to an upstream condition, which simply means that it cannot start processing a new input if no input is available in the (input) FIFO queue.
Operator execution, thread allocation, and scheduling is managed by the GXF backend, which is not shown in the figure.

conduct a response-time analysis of a Holoscan application.
Fig. 1 illustrates the high-level interactions between two com-
municating Holoscan operators using a Holoscan endoscopy
tool tracking application [12] as an example.

Operators, the building blocks of a Holoscan application,
perform recurring tasks such as processing sensor inputs
and displaying a stream of images. These operators are
interconnected in a DAG to facilitate complex interactions and
dependencies in an application. Each operator features input
and output ports, named Receivers and Transmitters, which
handle data reception and transmission to other operators. The
communication between each pair of output (transmitter) and
input (receiver) ports (i.e., the data flow along an edge between
two adjacent operators) is orchestrated by the backend using a
First-In-First-Out (FIFO) double-buffered queue [13], which
also serves as a data buffer for the ports.1 If full, the queue can
be configured to drop either old or new elements depending on
the overflow discipline configured.2 The queue implementation
and the overflow discipline do not affect the FIFO property
when considering items that are not dropped. Hence, we ignore
these details in our worst-case response-time analysis.

Each operator is subjected to a number of conditions that
can affect their execution. A condition could relate to an input
port, determining if the connected input buffer has adequate
space to accommodate a new message. Alternatively, it might
be a periodic condition that verifies if a specified duration
has elapsed since the last invocation of the operator. The
two most prevalent conditions are MessageAvailableCondition

1Each double-buffered queue configured to hold C items is actually divided
into two stages, the main stage and the backstage, each of which has capacity
C and which operate together as a FIFO ring buffer. When a new item is
pushed, it is placed into the backstage. When an item is popped, the oldest
item in the main stage is removed and returned. A sync function moves all
the items in the backstage to the main stage whenever an operator reads from
an input port or pushes to an output port. Despite the space for 2C items, the
queue effectively operates as a single FIFO queue with capacity C.

2Three overflow disciplines are allowed: kFault throws an error in case of
an overflow, kReject drops the new item without disturbing any old items,
whereas kPop removes the oldest item to make space for the new item.

and DownstreamMessageAffordableCondition, which we refer
to as upstream and downstream conditions, respectively. The
upstream condition ensures that an operator activates only when
each of its input queue buffers is not empty. The downstream
condition allows operator execution only when the output port
buffers have space to accommodate new messages.

The Holoscan SDK offers two user-level schedulers for ap-
plication operators: Greedy Scheduler [14] and Multi-threaded
Scheduler [15]. The Greedy Scheduler processes operators
in an application DAG in topological order using a single
thread, preventing parallel operator execution. Response-time
analysis is trivial as response times are simply the sum of
individual operator execution times under default conditions.
We focus on the Multi-threaded Scheduler. This scheduler
also arranges operators in a DAG in topological order but
executes them concurrently across multiple threads. For our
response-time analysis, we assume that the number of threads
matches the total number of operators, and each thread is
pinned to a single exclusive CPU core. This assumption holds
as our dataset, sourced from NVIDIA HoloHub, consists of
applications where the operator and thread count do not surpass
the core availability in NVIDIA AGX and IGX Orin platforms.

III. MOTIVATING EXAMPLES

We first demonstrate how the downstream conditions in
the Holoscan SDK add additional delays, which can have a
substantial impact on worst-case response times.

Example 1. Consider a DAG with just two connected
operators O1 and O2 requiring execution times of e1 = 100ms
and e2 = 1000ms, respectively. Queue Q1 buffers inputs
before O1 and queue Q1,2 buffers intermediate data between
O1 and O2. Suppose both queues have a capacity of C = 1.
A new input arrives every 100ms. The overflow discipline
ensures that if Q1 is full, the input is dropped, else, the input
is buffered in Q1. Fig. 2 illustrates the DAG structure and the
state of its queues and operators at different times, as inputs
I1, I2, . . . , I32 arrive periodically. We assume multiple events
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Fig. 2. An example showing how the downstream condition can affect operator
execution. The figure shows the state of a simple DAG with two operators and
with periodic inputs at different times, with the timestamps shown on the left.
Operators O1 and O2 have execution times 100 ms and 1000 ms, respectively,
and are denoted with green boxes. An idle operator is shown with an empty
box, whereas an operator processing an input is labeled with that input inside
the box. The arrows show the queues of O1 and O2, Q1, and Q1,2. A queue
holding an input is labeled with that input on the top of its corresponding
arrow, whereas an empty queue is not labeled at all.

can happen simultaneously and with no overhead. For example,
input I1 can leave operator O1 and arrive at O2 and another
input I2 can arrive at O1, all at the same time instant.

Initially, at t = 0ms, input I1 arrives; operator O1 is idle at
this time, so it immediately starts processing I1. At t = 100ms,
O1 finishes processing I1 and I2 arrives; O1 and O2 hence
immediately start processing I2 and I1, respectively. After
another 100ms, at t = 200ms, O1 finishes processing I2
and I3 arrives; however, O2 is still processing I1; hence, I2
is queued in Q1,2, and I3 is queued in Q1. Note that I3
is queued even though O1 is idle because the downstream
condition prevents O1 from processing a new input until its
downstream queue Q1,2 has at least one empty space. All
subsequent inputs I4, I5, . . . , I11 are dropped, as the state of
the DAG does not change during this time, and Q1 remains
full. Finally, at t = 1100ms, when O2 finishes processing I1,
it consumes I2 from Q1,2 and starts processing it; this empties
Q1,2, which satisfies O1’s downstream condition, which in turn
allows O1 to start processing I3. The new input I12 can now
be buffered and need not be dropped, as Q1 is empty. This
behavior repeats periodically, as shown in the figure.

Ignoring inputs that are dropped, the worst-case response
time in the above example is 2900ms, e.g., I3 arrived at
t = 200ms and O2 finished processing it at t = 3100ms.
Developers may not be able to determine this worst-case
response time easily. In fact, they may naively assume the
worst-case response time to be 2100ms: 1100ms being the
total processing time and 1000ms being the queuing delay
ahead of O2. The downstream condition, however, induces
additional blocking that adds an extra delay of 800ms.

Fig. 3. An example showing a performance anomaly where a local optimization
increases the overall response time. The top chain shows a linear chain with
four operators; the execution times are shown below respective operators and
the queuing delays are shown below respective edges. Ignoring delays prior
to the first operator, the response time is simply the sum of all these delays,
and indicated on the right of the chain. In the lower chain, the first operator
has a lower execution time, but the worst-case response time is nonetheless
higher due to queuing delays throughout the chain.

In this example, we used a simple linear chain with two
operators. With more complex applications, reasoning about
response times becomes even more difficult. In the following
example, we show that the worst-case response time in a linear
chain can often be sensitive to the ordering of execution times
(specifically, it may depend on the operator in the chain with
the greatest execution time), which can lead to performance
anomalies that result in degraded response times.

Example 2. Consider four operators O1, O2, O3, and O4

connected in a linear chain, with execution times e1 = 500ms,
e2 = 100ms, e3 = 100ms, and e4 = 400ms, respectively.
Like in Example 1, suppose all queues have a capacity of C = 1
and that a new input arrives every 100ms. Fig. 3 (top) illus-
trates this linear chain along with the queuing delays incurred
between operators. Ignoring the queuing delay prior to the first
operator for this example, all other queuing delays are always
zero. However, this is just a side-effect of the specific execution
times. Operator O1 consumes a new input only every 500ms,
i.e., at 0ms, 500ms, 1000ms and so on. Consequently, O2,
O3, and O4 are also able to consume a new input only every
500ms, i.e., O2 at times 500ms, 1000ms, . . ., O3 at times
600ms, 1100ms, . . ., and O4 at times 700ms, 1200ms, . . .
Since e4 = 400ms < 500ms, O4 is always able to process the
inputs faster than they are available, resulting in zero queuing
delays between each pair of operators. In other words, ignoring
delays prior to the first operator, the worst-case response time
is the sum of all execution times, i.e., 1100ms.

Suppose we wish to further improve the overall response time
of this linear chain. We decide to optimize the implementation
of the first operator, as it has the greatest execution time.
Succeeding, we manage to reduce its execution time from
e1 = 500ms to e′1 = 300ms. We expect an improvement
of at least 200ms in the end-to-end response time. In reality,
though, the linear chain’s worst-case response time is now
500ms more than that of the original configuration. The new
configuration is shown in Fig. 3 (bottom). A lower worst-case
execution time for the first operator shifts the “bottleneck” of
the linear chain from the first operator to the last operator,
causing queuing delays throughout the chain (which was not
the case before), resulting in this performance anomaly. The
queuing delays shown in the figure are not encountered by the
first few inputs, but the queues gradually start filling up, starting
at the last operator, eventually resulting in these queuing delays.
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Fig. 4. An example DAG where the interaction of two paths results in a
greater execution time that either have individually.

Fig. 5. Schedule for the DAG in Fig. 4, when inputs I1, I2, . . . , I5 are released
every 400ms. Release times are indicated by upward-pointing arrows and
response-time intervals are shown above. I1 refers to the first input, while I1B
refers to the first input when moving through path B. Data transfer between
two operators is indicated by a vertical dashed line, with a horizontal dashed
line representing queuing and showing the name of both queue and item.

The response times in this example are calculated using our
linear chain analysis presented in Section V.

In the next example, we motivate why a worst-case response-
time analysis for DAGs with both upstream and downstream
conditions is nontrivial and requires a careful consideration of
multiple possible scenarios, and that individually analysing all
linear chains (paths) in a DAG is insufficient.

Example 3. Consider the DAG shown in Fig. 4 consisting
of five operators O1–O5, with O1 being the source and O5

being the sink, and two paths from source to sink, Path A,
O1 → O2 → O3 → O5, and Path B, O1 → O4 → O5. The
operator execution times are e1 = 400ms, e2 = e3 = 300ms,
and e4 = e5 = 200ms. A new input arrives every 400ms.

Path A is clearly the longer path among the two and, if
analyzed individually as a linear chain, yields a worst-case
response time of 1200ms. However, as the timing diagram in
Fig. 5 suggests, the response time of an input can be as high as
1600ms. Further examination of the diagram reveals why this
is the case: during the time window [800ms, 1000ms), O1 is
blocked from executing I3 because Q1,4 is full (i.e., holding
I2B), meaning that execution is forbidden by the downstream
condition; Q1,4, in turn, is full because Q4,5 is full (i.e., holding
I1B), meaning that O4 cannot execute. In short, because Path
B is shorter than Path A, items arrive at O5 from Path B more
quickly than from Path A, periodically blocking O1’s execution
and increasing the worst-case response time.

Hence, in a DAG, one of the paths may cause delays in
another path due to precedence constraints, and, in conjunction
with downstream conditions, these delays may affect input
processing in a subsequent iteration. As a result of such

Fig. 6. Example showing that, due to downstream conditions, adding an
edge to the DAG can significantly change its end-to-end response time (both
increase or decrease depending on the operator execution times).

interactions, the actual processing rate of an operator (O1

in this example) may depend on all paths leading out of it up
to the point where the paths merge (O5 in this example).

In the final example, we show that even simple changes
to the application program, such as adding or dropping a
data flow edge in the program DAG, can change the response
time in unintuitive ways. We also highlight the limitations of
Holoscan’s latency profiling tool using this example.

Example 4. Consider the DAG shown in Fig. 6. We consider
two versions of the DAG, with and without the edge labeled
A. For each version, we use Holoscan’s Data Flow Tracking
tool to profile the response times across several iterations, and
report the maximum observed response time. With edge A, the
maximum observed response time is 2700ms. Removing the
edge reduces it to 2400ms. To make matters worse, if the
execution time of the second operator O2 is increased from
300ms to 700ms, removing edge A actually increases the
maximum observed response time from 3500ms to 3600ms.
These complex timing behaviors highlight that application
developers may overlook many potential timing issues during
the design phase and encounter them only post-development
(as the profiling tool cannot be used at design time).

Furthermore, Holoscan’s Data Flow Tracking tool (or any
empirical tool as a matter of fact) may need to be run for an
extended duration to achieve a trustworthy and reliable upper
bound on the response time. For example, consider the same
DAG as shown in Fig. 6 but without edge A, and suppose
that operators O1-O5 have execution times 191ms, 128ms,
215ms, 300ms, and 414ms, respectively. Holoscan’s profiling
tool required seven hours to converge on the worst-case
response time bound for this DAG. Initial measurements after
30 minutes recorded a maximum response time of 2069ms,
which increased to 2075ms after two hours, and reached
2080ms after seven hours. Of course, with empirical tools, it
is unclear if the observed bounds may increase further with
a more prolonged execution. Therefore, a rigorous response-
time analysis is essential, especially in critical and regulated
sectors like medical devices and industrial automation, which
is currently missing for Holoscan-like frameworks.

IV. SYSTEM MODEL

We model each Holoscan application as a directed acyclic
graph D = (V,E), where the set of all vertices V corresponds
to the set of all Holoscan operators and the set of all edges
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E corresponds to the set of all precedence relationships.
Specifically, V is a partially ordered set of operators, such that
if there is an edge from Ox to Oy, then Ox is before Oy in
V . A segment S ⊆ V (also called a path) is an ordered set of
operators such that each adjacent pair of operators Ox, Oy ∈ S
is connected by an edge from Ox to Oy .

Each operator Oi ∈ V is characterized by its best-case and
worst-case execution times, denoted elbi and eubi , respectively.
If the application uses two instances of the same Holoscan
operator, they are mapped to separate vertices in V . We assume
that D has exactly one source operator and exactly one sink
(terminal) operator, which we commonly denote as Osrc and
Osink , respectively. Any DAG with multiple sources or sinks
can be easily reduced to our model by appending auxiliary
source and sink nodes with zero execution times.

Each edge Ei,j = (Oi → Oj) is characterized by its sending
and receiving operators Oi and Oj , respectively. The edges
imply a dependency in the Holoscan application, e.g., Oj needs
an input from Oi to execute. However, since Oj may need
to buffer this input until all conditions are met (discussed
below), we assume that each edge Ei,j has a dedicated FIFO
queue Qi,j with capacity Ci,j . The FIFO queue abstracts the
double-buffered queue in the Holoscan implementation.

Both message available (upstream) and downstream con-
ditions are typically set with a default threshold of one
message. For example, if operator Oi has three incoming
edges, Ea,i = (Oa → Oi), Eb,i = (Ob → Oi), and Ec,i =
(Oc → Oi), and two outgoing edges Ei,x = (Oi → Ox) and
Ei,y = (Oi → Oy), the message available condition on each
incoming edge of Oi ensures that it can start execution only
if there is an input available in each incoming queue Qa,i,
Qb,i, and Qc,i, and the downstream condition ensures that Oi

does not execute until there is an empty slot available in each
outgoing queue Qi,x and Qi,y. Holoscan’s scheduler is work
conserving, i.e., if for any operator Oi both message available
and downstream conditions hold, the operator must execute.

Assumptions. We make four key assumptions based on
how Holoscan is deployed today. A1. We assume that the
queue capacity is 1 for each queue Qi,j , as Holoscan currently
does not allow edge-specific queue sizes by default, and it
is recommended to use the default queue capacity of 1 for
an application. A2. We assume that the platform contains
sufficient cores so that every operator can be executed in
parallel. This is the de facto deployment scenario as the
NVIDIA embedded platforms in use today typically have
twelve or more cores whereas the Holoscan applications have
fewer operators (e.g., see Figure 9 in Section VII).3 A3. We
assume that the Holoscan application, or DAG D, continuously
processes an infinite stream of inputs. The inputs may arrive
as frequently as possible with a minimum inter-arrival time of
0. However, this implies that some inputs may be dropped at
source. For our worst-case response-time analysis, we ignore

3In short, we leave the problem of interference and scheduling of more
operators on fewer cores for future work; rather, our goal in this paper is to
understand how the combination of upstream and downstream edge conditions
affect the worst-case response times of a Holoscan application.

such inputs. Specifically, we assume that if Osrc is idle and
all its downstream conditions are satisfied (note that Osrc does
not have any upstream conditions), it never needs to wait for
an input; and input will always be available. This also means
that periodic arrivals are possible. For example, the period
of 400ms in Fig. 5 is the maximum period allowed for this
graph, since any increase would cause the source operator to
become idle at some point in the execution history. A4. We
assume that the execution time of an operator, irrespective of
the input it is processing, remains fixed throughout a single
streaming run (during which the DAG may process several
inputs continuously). This can be easily achieved by spinning
(if needed) at the end of each operator execution.

Problem statement. Suppose D processes an infinite stream
of inputs I = {I1, I2, . . .}, where each input Ik is queued in
front of the source operator Osrc at time startk and is finished
being processed by the sink operator Osink at time finishk. Let
Idropped ⊆ I denote the set of inputs in I that are dropped. For
each input Ix ∈ Idropped , we can ignore its start and finish times
startx and finishx, or let startx = finishx = ∞. Let R(D)
denote the worst-case response time (WCRT) experienced by
any input that is successfully processed through the DAG. Given
assumptions A1-A4, our objective is to find an upper-bound
Rub(D) on this worst-case response time, i.e.,

Rub(D) ≥ R(D) = max
∀Ik∈I\Idropped

(finishk − startk) . (1)

MAX and OPT scenarios. Despite assumption A4, users
may want to analyze different DAG instances with different
execution time profiles, e.g., to understand when is it beneficial
to optimize and reduce the execution time of certain operators.
Also, the platform configuration, such as the clock frequencies,
may affect the execution times. Hence, we consider two
distinct scenarios: MAX and OPT. Let ei ∈ [elbi , e

ub
i ] denote

the execution time of operator Oi in every iteration of a
single streaming run. In the MAX scenario, we assume that
ei = eubi is always the maximum possible value. In the OPT
scenario, we assume that ei ∈ [elbi , e

ub
i ], say, due to some

optimizing configurations. To see why OPT scenarios are
relevant, recall Example 2 from Section III. The OPT scenario
allows identifying performance anomalies at design time, which
helps developers pursue productive optimizations.

V. LINEAR CHAIN MODELING

We divide our response-time analysis into two parts. We
discuss linear chains first and then in the next section extend
our linear chain analysis for arbitrary DAGs. We model a linear
chain using a simplified DAG.

Dchain = (Vchain , Echain) :

Vchain = {O1, O2, . . . , ON},
Echain = {(O1 → O2), . . . , (ON−1 → ON )},
Osrc = O1 and Osink = ON . (2)

We start with some preliminary definitions.
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Definition 1. Given a segment S = {Ok+1, . . . , Ok+x} ⊆
Vchain of length x, with k ≥ 0 and k + x ≤ N , bottleneck
B(S) denotes the operator in S with the maximum execution
time (ties broken in favor of the preceding operator), i.e.,

B(S) = Ob s.t. eubb = max
1≤i≤x

(eubk+i) and

∀j ∈ [1, x], eubb = eubk+j =⇒ b ≤ k + j. (3)

Definition 2. For any DAG D = (V,E), the service rate µi of
any operator Oi ∈ V is defined as the inverse of its worst-case
execution time, i.e., µi = 1/eubi .

Recall from Section IV, assumption A3, that the source
operator O1 never needs to wait for an input, and may receive
inputs as frequently as possible. If inputs arrive faster than the
rate at which they can be processed, they may be dropped, and
are not considered by our response-time analysis. However,
subsequent operators in the linear chain may have to wait for an
input owing to processing delays in the earlier part of the linear
chain. For example, in a chain with only two operators O1

and O2, if e1 = 100ms and e2 = 1000ms, because e1 < e2,
assumption A3 implies that O2 too never needs to wait for
an input. In contrast, if e1 = 1000ms and e2 = 100ms,
because e1 > e2, O2 needs to wait for O1 to finish executing.
Generalizing this example, the bottleneck operator in the linear
chain (as computed using Definition 1) limits the service rate
µ(Dchain) of the entire linear chain.

Definition 3. For any Dchain = (Vchain , Echain), its service
rate µ(Dchain) is defined as the service rate of its bottleneck
operator, i.e., if Ob = B(Vchain), µ(Dchain) = µb.

A. Linear Chain with MAX Execution Times

In the following, Dchain refers to the linear chain with N
operators as defined in Eq. (2), and Ob is commonly used
to refer to its bottleneck operator B(Vchain). The bottleneck
operator allows us to divide a linear chain into two segments
and analyse the response time of each segment separately. We
first consider a special case in Lemma 1 where the bottleneck
operator is the last operator, i.e., Ob = ON .

Lemma 1. Given Dchain , if Ob = ON = B(Vchain), the worst-
case response time in the MAX case is bounded by

Rub
MAX (Dchain) = eubb · (b+ 1). (4)

Proof. Consider Ob and its preceding operator, Ob−1. Since
Ob is the bottleneck, µb−1 > µb. As such, Ob−1 will produce
its outputs more often than Ob can consume its inputs. This
causes the number of inputs in queue Qb−1,b between these
operators to grow without bound and eventually overflow.

However, since all operators are subjected to a default
downstream condition, an operator does not start execution
if there is no space to push an item to the queue of the
communication buffer. Therefore, the service rate of Ob−1

effectively decreases to µ′
b−1 = µb. As Ob is the bottleneck

and has the minimum service rate, we can also conclude that
µb−2 > µ′

b−1 = µb. Hence, the service rate of Ob−2 also
effectively decreases to µ′

b−2 = µb.

More generally, for each operator Ob−m in the linear chain
(1 ≤ b−m < b), its service rate µb−m > µ′

b−m+1 = µb; and
in order for the downstream condition to hold across the chain,
its effective service rate decreases to µ′

b−m = µb.
Since we have b operators in Dchain , and each operator’s

effective service rate decreases to µb, i.e., each operator releases
an output only every eubb units of time, the longest time it takes
an input to move through the linear chain is eubb · (b + 1),
corresponding to b operators and the queue preceding O1.

We consider another special case in Lemma 2. We consider
a linear chain D′

chain of length N + 1. D′
chain is identical

to Dchain for up to the first N operators, but has an extra
operator ON+1 and an extra edge (ON → ON+1). However,
both chains share the same bottleneck operator ON .

Lemma 2. Given Dchain as in Lemma 1, and another lin-
ear chain D′

chain = (Vchain ∪ {ON+1}, Echain ∪ {(ON →
ON+1)}), if Ob = ON = B(Vchain) = B(V ′

chain), the worst-
case response time of D′

chain in the MAX case is bounded by

Rub
MAX (D′

chain) = Rub
MAX (Dchain) + eubN+1. (5)

Proof. Since Ob = ON is also the bottleneck operator in
the new linear chain D′

chain , the rate at which operator ON

produces its outputs is lower than the rate at which the newly
added operator ON+1 consumes its inputs. Hence, no data
item will ever have to wait in queue QN,N+1 between these
operators, i.e., no queuing delay can occur between operators
ON and ON+1. Hence, the worst-case response-time bound
of D′

chain is simply the worst-case response time-bound of
Dchain , i.e., Rub

MAX (Dchain), plus the worst-case execution
delay at the last operator ON+1, i.e., eubN+1.

We generalize Lemma 2 by considering another linear chain
D′′

chain , which, like before, is an extended version of Dchain

with N+1 operators, and with the same bottleneck operator as
Dchain , i.e., Ob = B(Vchain) = B(V ′′

chain). However, unlike
before, the bottleneck operator may not necessarily be the N th

operator ON , but can be any operator from O1 to ON .

Lemma 3. Given Dchain , and another linear chain D′′
chain =

(Vchain ∪ {ON+1}, Echain ∪ {(ON → ON+1)}), if Ob =
B(Vchain) = B(V ′′

chain) for some 1 ≤ b ≤ N , the worst-case
response time of D′′

chain in the MAX case is bounded by

Rub
MAX (D′′

chain) = Rub
MAX (Dchain) + eubN+1. (6)

Proof. The effective rate at which Dchain produces its outputs
is µ(Dchain) = µb (Definition 3). Since µb < µN+1, the
remaining proof is analogous to that of Lemma 2.

In Lemma 4, we use Lemmas 1 to 3 to upper-bound the worst-
case response time for Dchain , without making any assumptions
about which operator is the bottleneck.
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Lemma 4. The worst-case response time of Dchain in the MAX
case is bounded by

Rub
MAX (Dchain) = eubb · (b+ 1) +

N∑
i=b+1

eubi . (7)

Proof. Let Db
prefix = (V b

prefix , E
b
prefix ) denote a sub-chain of

Dchain , with V b
prefix = {O1, O2, . . . , Ob−1, Ob}. As Db

prefix is
itself a chain ending in a bottleneck operator, Lemma 1 gives
us the following upper bound on its response time:

Rub
MAX (Dprefix ) = eubb · (b+ 1). (8)

Now consider Db+1
prefix = (V b

prefix ∪ {Ob+1}, Eb
chain ∪ {(Ob →

Ob+1)}). From Lemma 2, and from the upper bound on the
response time of Db

prefix from Eq. (8), we have:

Rub
MAX (Db+1

prefix ) = Rub
MAX (Db

prefix ) + eubb+1

= eubb · (b+ 1) + eubb+1. (9)

Next, we consider Db+2
prefix = (V b

prefix∪{Ob+1, Ob+2}, Eb
chain∪

{(Ob → Ob+1), (Ob+1 → Ob+2)}). This time, from Lemma 3
and from Eq. (9) above, we have:

Rub
MAX (Db+2

prefix ) = Rub
MAX (Db+1

prefix ) + eubb+2

= eubb · (b+ 1) + eubb+1 + eubb+2. (10)

Adding one operator at a time to Dprefix for up to N − b
iterations, and applying Lemma 3 every time like in Eq. (10),
we can have an upper-bound on the response time of DN

prefix as

Rub
MAX (DN

prefix ) = eubb · (b+ 1) +
N∑

i=b+1

eubi , (11)

which also applies to Dchain , as DN
prefix = Dchain .

B. Linear Chain with OPT Execution Times

In the previous section, we showed that the WCRT of a
linear chain Dchain in the MAX case depends on the bottleneck
operator. In the OPT case, the bottleneck operator of the same
chain may be different, and hence the WCRT may be different
and needs to be separately derived.

To facilitate response-time analysis in the OPT case, we
define a parameterized instance of Dchain = (Vchain , Echain),
parameterized by function λ. We use Dchain(λ) =
(Vchain(λ), Echain(λ)) to denote this parameterized instance.
While each operator Oi in Vchain required eubi time to process
an input in the MAX case, each operator Oi in Vchain(λ)
requires λ(elbi , e

ub
i ) ∈ [elbi , e

ub
i ] time to process an input in the

OPT case. Note that in both cases, the operator execution time
remains constant in all iterations for all inputs.

The bottleneck operator may vary for different definitions
of λ. The WCRT of Dchain in the OPT case is thus upper-
bounded by the maximum MAX-case WCRT across all possible
definitions of λ, i.e.,

Rub
OPT (Dchain) = max

∀λ
Rub

MAX (Dchain(λ)). (12)

The number of possible definitions of λ is exponentially
large, depending on the number of operators and their range of
execution times. However, since Dchain contains N operators,
there can be only up to N different bottleneck operators.
Suppose λb denotes any definition for which the bottleneck is
operator Ob. Thus, we can refine Eq. (12) as follows.

Rub
OPT (Dchain) =

n
max
b=1

max
∀λb

Rub
MAX (Dchain(λb)). (13)

Lemma 5. If λmax
b is defined as follows:

λmax
b (elbb , e

ub
b ) = eubb , (14)

∀i < b : λmax
b (elbi , e

ub
i ) = min(eubb − 1, eubi ), (15)

∀j > b : λmax
b (elbj , e

ub
j ) = min(eubb , eubj ), (16)

then λmax
b also yields the maximum WCRT among all possible

definitions of λb, i.e.,

Rub
MAX (Dchain(λ

max
b )) = max

∀λb

Rub
MAX (Dchain(λb)). (17)

Proof. From Eq. (7) in Lemma 4, we know that the WCRT
for a given chain is entirely dependent on the execution times
of the bottleneck and of every operator following it. Thus, we
can construct a maximal λb by adjusting the execution time
of every operator in the chain. Eq. (14) maximizes the first
term on the right-hand side of Eq. (7). Eq. (15) is a necessary
condition, as otherwise Ob would not be the bottleneck. Eq. (16)
maximizes the second term on the right-hand side of Eq. (7)
while ensuring that Ob is still the bottleneck.

If any operator’s lower bound on execution time is greater
than the upper bound of Ob, then no λb exists, as it is impossible
for Ob to be the bottleneck. In this case, λb will not be
considered at all in Eq. (13) and in Eq. (18) below.

Since λmax
b is easy to compute using Eqs. (14) to (16), we

can also compute Rub
OPT (Dchain) efficiently using:

Rub
OPT (Dchain) =

n
max
b=1

Rub
MAX (Dchain(λ

max
b )). (18)

VI. DAG MODELING

Recall Example 3 from Section III. We demonstrated that
using a naive approach of enumerating all paths in the DAG,
deriving an upper bound on the response time of each path
using a linear chain analysis, and then computing the maximum
value among these upper bounds can result in an unsafe upper
bound on the worst-case response time of the DAG. In other
words, two or more paths in a DAG may interact through both
upstream and downstream conditions to result in additional
delays that do not exist in linear chains. We therefore define a
different response-time analysis for DAGs.

Analogous to the worst-case execution time of an operator,
we first define the worst-case inter-processing delay for each
operator in the DAG. This differs from the worst-case execution
time when two or more paths diverge from that operator. For
instance, consider an operator Of from which P paths diverge,
which then converge back at operator Og . Suppose each path i
corresponds to a segment Si = {Of , Oi1 , Oi2 , . . . , Oini

, Og}
consisting of ni operators other than Of and Og .
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Fig. 7. An example showing an inter-processing delay calculation for the
operators A and B. The number contained within each operator represents its
execution time. As per Lemma 6, the inter-processing delay of B is defined as
the longest path in terms of execution time from B to C, excluding the execution
time of C. This comes to δubB = 500 + 200 = 700, with the operators used
in the calculation shown with dashed outlines. The longest path from A to D
includes both the operators with a dashed outline and those with a bold outline.
Thus, A’s inter-processing delay is δubA = 300 + 500 + 200 + 100 = 1100.

Definition 4. Assuming operator Of never waits for inputs,
and assuming operator Og incurs no delays due to downstream
conditions, the worst-case inter-processing delay δubf of Of

is defined as the maximum delay between any two of its
consecutive outputs. Formally, if Of finishes processing the
kth input at time tk, then δubf = maxk(tk+1 − tk).

Lemma 6. δubf is the sum of Of ’s own WCET and the WCETs
of all operators on the longest path up to and excluding Og , i.e.,

if x = arg
P

max
i=1

ni∑
k=1

eubik then δubf = eubf +

nx∑
k=1

eubxk
. (19)

Proof. Consider the case where Of has a direct edge to Og,
i.e., some path Py consisting of no other operators (e.g., edge
A in Fig. 6). This is the worst case scenario as Of cannot start
processing an input until queue Qf,g is empty, but Og cannot
start processing the input from Qf,g before inputs from all
other paths are available, including from some path Px (which
is the longest path between Of and Og).

Hence, in the worst case, the entire path latency of Px is
added to Of ’s worst-case inter-processing delay, in addition to
Of ’s own WCET. That is, δubf = eubf +

∑nx

k=1 e
ub
xk

.

See Fig. 7 for an example inter-processing delay calculation.
For operators from which multiple paths do not diverge,
i.e., they have only one following operator (like in a linear
chain), their worst-case inter-processing delay is same as their
worst-case execution time. Formally, as well, in the definition
of δubf in Lemma 6, the summation term is zero as there are
no paths with additional operators between Of and Og .

Corollary 1. If Of has only one outgoing edge (Of → Og)
(like in a linear chain), then δubf = eubf .

Note that Lemma 6 defines δubf pessimistically. It assumes
there exists an edge between Of and Og even though there may
not be such an edge in reality. For instance, when defining the
worst-case inter-processing delay for O1 in the DAG illustrated
Fig. 4, Lemma 6 assumes a DAG as shown in Fig. 8 with an
additional path C directly connecting O1 and O5.

A consequence of this pessimistic assumption is that the
operator with the maximum worst-case inter-processing delay,
say Ox, may not necessarily be the bottleneck, as its worst-

Fig. 8. A modified version of Fig. 4, with a new path from source to sink
(Path C). Despite the difference in structure, the two graphs yield identical
worst-case inter-processing delays as per our definition in Lemma 6.

case delay may never be realized in practice. Instead, a
different operator, say Oy , with a smaller but tighter maximum
worst-case inter-processing delay may become the bottleneck,
resulting in a different worst-case response-time bound. This
new bound may in fact be worse if Oy is positioned much later
in the DAG, i.e., y ≫ x (assuming operators are numbered
incrementally from source to sink), which forces a longer prefix
of operators to process their respective inputs at Oy’s rate.

For instance, recall Example 3; for the DAG illustrated in
Fig. 4, Lemma 6 computes a worst-case inter-processing delay
of δub1 = 1000ms for operator O1. However, the schedule in
Fig. 5 suggests that the effective maximum inter-processing
delay of O1 is only 600ms (e.g., interval [800ms, 1400ms)
from the time when O1 finishes processing I2 to the time when
it finishes processing I3), and the resulting worst-case response
time is 1600ms (e.g., that of I5 from its arrival at 1600ms
to its completion at 3200ms). Now, suppose we add a new
operator O6 after the sink node O5, with an edge O5 → O6,
and with the highest execution time e6 = 900ms. The worst-
case inter-processing delay for O6 is δub6 = e6 = 900ms,
which is a tight bound, unlike δub1 . Hence, although δub1 > δub6 ,
O6 becomes the bottleneck in practice. Moreover, since it is
the last operator, it limits the processing rate of all previous
operators, resulting in a much higher worst-case response time
of 4500ms (as analyzed using Lemma 11 later in this section).
Hence, compared to our linear chain analysis, we adopt a
more nuanced approach for analyzing DAGs that considers all
possible operators as bottleneck candidates.

A. DAG with MAX Execution Times

We compute the maximum possible response time assuming
that operator Ob with a worst-case inter-processing delay of δubb
is the bottleneck (Lemmas 7 to 10). Once we have a formula for
the worst-case response time of that DAG assuming Ob is the
bottleneck (Lemma 10), we apply this bound to all operators
in D, taking the maximum to be the worst-case response time
of the whole DAG (Lemma 11).

Lemma 7. Let Pafter denote the set of all paths from Ob

to Osink . Each path i corresponds to a segment Si =
{Ob, Oi1 , Oi2 , . . . , Oini

, Osink} consisting of ni operators
other than Ob and Osink . Let ∆after Ob

denote an upper bound
on the maximum delay that any input through D incurs after
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being processed by Ob. ∆after Ob
is the sum of all execution

times except that of Ob on the slowest path in Pafter , i.e.,

∆after Ob
=

nx∑
k=1

eubxk
+ esink where x =

|Pafter |
argmax

i=1

ni∑
k=1

eubik .

(20)

Proof. We proceed similar to the proof of Lemma 2. Since
Ob is the bottleneck operator, it produces its output slower
than any downstream operator, at a rate upper-bounded by its
worst-case inter-processing delay. Hence, no data item has to
wait in any of its downstream queues. Thus, the worst-case
delay ∆after Ob

incurred by any input after Ob is simply the
sum of all execution times on the slowest path in Pafter .

Lemma 8. Let Pbefore denote the set of all paths from
Osrc to Ob. Each path k corresponds to a segment Sk =
{Osrc , Ok1

, Ok2
, . . . , Okmk−2

, Ob} consisting of mk operators
including Osrc and Ob. Let ∆before Ob

denote an upper bound
on the maximum delay that any input through D incurs before
being processed by Ob. ∆before Ob

depends on the length of the
shortest path in Pbefore and is defined as follows:

∆before Ob
= δubb ·my where y =

|Pbefore |
argmin

k=1
mk. (21)

Proof. In the worst case, all operators in all paths in Pbefore are
either directly or transitively waiting on a downstream queue
just before Ob, which is the bottleneck. When this happens,
operators in the paths in Pbefore are not processing any inputs
but simply holding an input in their respective input queues.

It must be noted that all paths in Pbefore derive their inputs
simultaneously from Osrc . Therefore, all paths in Pbefore must
always hold the same number of inputs at any point of time.
For example, if the lengths of two paths in Pbefore are 4 and 5,
then maximum 4 inputs will be processed and held in each of
the two paths. Hence, the number of pending inputs in Pbefore

is determined by the shortest path, i.e., the path with the fewest
number of operators (or the fewest number of queues).

Furthermore, as we show in the proof of Lemma 1, the
effective service rate of all operators on this path decreases to
that of Ob. Hence, the longest time it takes these inputs to move
through this path is upper-bounded by δubb ·my , where my is
the length of the shortest path before and including Ob.

Lemma 9. Let P denote the set of all paths from Osrc

to Osink . Each path j corresponds to a segment Sj =
{Osrc , Oj1 , Oj2 , . . . , Ojlj

, Osink} consisting of lj operators
other than Osrc and Osink . Let z be the longest path in P in
terms of total execution time. Let q be the longest path in P of
which Ob is a part of, i.e., Ob ∈ Sq. The maximum delay that
an input through DAG D can incur increases by the difference
in execution time between z and q. That is,

∆longest Ob
=

lz∑
k=1

eubzk −
lq∑

k=1

eubqk where (22)

z = argmax
1≤j≤|P |

lj∑
k=1

eubjk and q = argmax
1≤j≤|P |∧Ob∈Sj

lj∑
k=1

eubjk .

Proof. If Ob is not on the path z, then at some point, an
item moving through Ob’s path may need to wait for an input
belonging to z to arrive to the operator where both paths join.
The worst-case increase in delay due to this occurrence is equal
to the difference in the execution time between the two paths,
or the amount of time the item moving through q must wait
for the item moving through z to arrive. If z = q, then the
difference between their total execution times is 0.

Lemma 10. If y is the shortest path from Osrc to Ob with length
my, including Ob, and x is the slowest path from Ob to Osink,
with length nx, the worst-case response time of D in the MAX
case, assuming that Ob is the bottleneck, is bounded by

Rub
MAX (D)b = ∆before Ob

+ eb +∆after Ob
+∆longest Ob

(23)

Proof. Follows from Lemmas 7 to 9.

Lemma 11. If D is an arbitrary DAG with r operators, the
worst-case response time of D in the MAX case is bounded:

Rub
MAX (D) = max

∀r
Rub

MAX (D)r (24)

Proof. Lemma 10 bounds the worst-case response time an input
can suffer in a DAG for which we know Ob is the bottleneck.
Assuming each operator in the DAG to be the bottleneck, and
taking the maximum over all possible WCRTs bounds the
worst-case response time through the DAG.

Using these results requires identifying, for each operator
where paths diverge, the first operator at which those paths
come back together (i.e., Of and Og in Lemma 6, respectively).
This can be done by constructing the postdominator tree
corresponding to D. The algorithm to identify dominance
is quadratic in theory, but much faster in practice [16].

B. DAG with OPT Execution Times

Like in Section V-B, to facilitate response-time analysis
in the OPT case, we define a parameterized instance D(λ) =
(V (λ), E(λ)). Each operator Oi in V (λ) requires λ(elbi , e

ub
i ) ∈

[elbi , e
ub
i ] time to process an input in the OPT case. The WCRT

of D in the OPT case is upper-bounded by the maximum
MAX-case WCRT across all possible definitions of λ, i.e.,

Rub
OPT (D) = max

∀λ
Rub

MAX (D(λ)). (25)

Section V-B proposed an efficient method to compute the
OPT-case WCRT for linear chains. We reuse this methodology
for arbitrary DAGs. First, we refine Eq. (25) as follows,

Rub
OPT (D) =

n
max
b=1

max
∀λb

Rub
MAX (D(λb)), (26)

where λb denotes any definition for which the bottleneck is
operator Ob. More formally, this means any definition where:

Rub
MAX (D(λb)) = max

∀r
Rub

MAX (D(λb))r (27)
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Lemma 12. If λmax
b is defined as follows:

λmax
b (elbb , e

ub
b ) = eubb , (28)

∀j > b : λmax
b (elbj , e

ub
j ) = eubj , (29)

∀i < b : λmax
b (elbi , e

ub
i ) = elbi , (30)

∀zk : λmax
b (elbzk , e

ub
zk
) = eubzk , (31)

then λmax
b also yields the maximum WCRT among all possible

definitions of λb, i.e.,

Rub
MAX (D(λmax

b )) = max
∀λb

Rub
MAX (D(λb)). (32)

Proof. The greatest difference between this scenario and the
linear chain is the presence of ∆longest Ob

. This term subtracts
an amount equal to

∑lq
k=1 e

ub
qk

from the WCRT, where q is
defined in Lemma 9. Notice that all the execution times after
Ob are added in ∆after Ob

. These terms always cancel out,
so we do not need to consider that part of the subtraction in
the optimization. This means the only part of the subtraction
remaining corresponds to the operators before Ob, the execution
times of which we can minimize without affecting other parts
of the equation.

We construct a maximum λmax
b by adjusting the execution

times of every relevant operator in the DAG.
Eq. (28) is the first part of maximizing ∆before Ob

, as eb is
a component of δubb and is also itself part of Eq. (23).

Eq. (29) is the second part of maximizing ∆before Ob
, as well

as maximizing ∆after Ob
. ∆before Ob

is maximized because
all operators from Ob to its postdominator are a component of
δubb , as shown in Lemma 6.

Eq. (30) is the first part of maximizing ∆longest Ob
, as these

are the negative execution times within that expression that do
not cancel with another term.

Eq. (31) is the second part of maximizing ∆longest Ob
. This

maximizes the execution times along z, the path from source
to sink with the greatest total execution time. Note that if z =
q, this condition contradicts with Eq. (30) because we would
be trying to maximize execution times in z while minimizing
them in q. This does not matter, as if we ignore the two
contradictory conditions, we are left with Eq. (28) and Eq. (29),
which maximize all parts of Eq. (23) aside from ∆longest Ob

,
which is 0 if z = q.

We can thus compute Rub
OPT (D) efficiently using:

Rub
OPT (D) =

n
max
b=1

Rub
MAX (D(λmax

b )). (33)

VII. EVALUATION

We evaluate the pessimism and scalability of our analytically
derived response-time upper bounds using real-world Holoscan
applications and larger synthetic DAGs. We use results from
discrete event simulations as well as measurements from an
NVIDIA embedded platform as baselines. Specifically, we use
the NVIDIA Jetson AGX Orin Developer Kit featuring a 12-
core Arm Cortex-A78AE CPU and 64GB RAM for experiments.
It runs an Ubuntu-based Linux for Tegra (L4T) OS, with kernel
5.15. The CPU frequency is fixed at 2.2 GHz (maximum). We

Fig. 9. Holoscan application DAGs used for evaluation. Green nodes are
source operators while red nodes with dashed outlines are sink operators.

run all experiments with Holoscan version 0.6.0 (we have also
reproduced all results with Holoscan version 2.2.0).

A. Workloads

Our discrete event simulator is designed to mimic the
behavior of the Holoscan framework. Each application is run for
30 minutes of simulated time. These simulations are also used in
the scalability study to efficiently find WCRTs of large synthetic
DAGs to compare against our analysis. For measurements on
the NVIDIA hardware, we encode the graph structures into
Holoscan applications using placeholder operators that busy-
wait for their designated execution time upon each invocation.
We run each graph variation for 30 minutes and measure the
performance using Holoscan’s Data Flow Tracking feature.
We assume that new input is always available to the source
operator immediately after it consumes its previous input. For
our theoretical bounds, we use the analyses described in the
previous sections. The average time to compute a response-time
bound (outside of the scalability study) is 0.4ms.

As part of evaluation on the NVIDIA hardware, we also
characterize the overheads associated with running a Holoscan
application, which correspond to the closed-source part of the
GXF backend engine, Linux scheduling, and related system
software underneath – components we have not modeled as part
of our response-time analysis (Section VII-C). Our overhead
analysis reveals a fairly straightforward relationship with the
number of Holoscan operators in an application, but more
in-depth analysis is reserved for future work.

The HoloHub repository by NVIDIA provides a number of
realistic example applications in medical devices, radio signal
processing and other industries, which are used as prototypes
for production-quality software by commercial vendors [10].
For evaluation, we use the DAG structures extracted from
these existing 50 HoloHub applications. We exclude simplistic
applications (such as with only two or three operators) and
eliminate isomorphic and unconnected examples, leaving only
unique graphs in our evaluation set. Fig. 9 shows the final
eight types of DAG structures evaluated in this work.

For each graph, we create n variations, where n is the number
of operators in the graph. The variations differ in terms of the
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Fig. 12. Analysis versus measurements

WCET assigned to each operator, which we randomly select
from the interval [100ms, n ∗ 100ms]. We increase the upper
bound based on the number of total operators in an application
to allow a wider execution time range. Additionally, we enforce
a condition that for each operator in the graph, there is one
variation in which it has the greatest WCET across all operators.
This is to help ensure that our randomly generated variations
do not overly favor certain configurations (e.g., the source
operator having the greatest WCET in every variation).

B. Evaluation in Simulation

Fig. 10 plots simulated worst-case response times against
our predicted worst-case response times for different graph
applications and variations. Our proposed algorithm provides
a close upper bound on the WCRT for every graph variation.
Most applications and variations are on or near the identity
line, signifying a close match between predicted and simulated
worst-case response times. We also note that no simulated
WCRT is greater than our predicted upper bound.

The results show that most graph structures have a similar re-
lationship between their corresponding predicted and simulated
WCRT across all variations. Our analysis is conservative for all
variations of certain graph structures, particularly Endoscopy
Depth Estimation (CLAHE) (A) and MultiAI Ultrasound (H).
Their simulated WCRT are several hundred milliseconds below
our derived theoretical upper bounds. Our Section VI analysis
makes a worst-case assumption about path length in Lemma 6,
where we assume the existence of a direct edge between two
operators which may not exist. This sometimes leads to an
overly conservative, although safe, upper bound.

C. Evaluation on an Embedded Platform

We also evaluated HoloHub applications on an AGX Orin
developer kit. The high-level difference between our simulated
WCRTs and observed WCRT on AGX Orin is the presence
of overheads. Here, overhead is defined as any part of the
overall response time of a data item which is not the result
of queuing and operator execution, and thus not part of our
system model. As our response-time upper bounds can be very
close to simulated WCRTs, as demonstrated in the previous
section, even a minimal amount of execution overhead on
real hardware may lead to underpredicting the WCRT of an
application. Therefore, we perform a preliminary analysis of

Holoscan system overheads to facilitate comparison of observed
WCRTs with our theoretically derived bounds.

NVIDIA’s Graph Execution Framework (GXF), which
Holoscan uses as a backend execution engine, is partially open-
source (only header files are available), restricting us from
analyzing the source code to accurately model the overhead
of scheduling operators belonging to a specific application in
Linux. Instead, we empirically predict the overhead by carrying
out experiments over different DAG structures. We experiment
with increasing the length of linear chains of operators, like
those shown in Fig. 3. We fix each operator’s execution time at
100ms and use the default conditions at the input and output
ports. Fig. 11 plots the theoretical WCRT using our response-
time analysis (simple to calculate as there should be no queuing
or blocking) against the observed WCRT. It shows minimal
overheads due to scheduling of operators by the GXF engine
on Linux. We also observed that multiple paths in a DAG do
not add any extra overheads compared to the longest linear
chain of operators. Based on this empirical observation, we
add 3ms as overhead per operator in the longest linear chain
in an application DAG, to achieve a safe and reliable upper
bound for the NVIDIA hardware.

The theoretical WCRT including the heuristic overheads and
the observed WCRT on AGX Orin for HoloHub application
DAGs are shown in Fig. 12. Our response-time analysis
again provides a close upper bound for most graphs, with
no observed WCRTs exceeding our upper bounds. Although
system overheads play an important role in achieving close
upper bounds, they are orthogonal to our response-time analysis
of the Holoscan programming framework.

D. Scalability Study

Current Holoscan applications have only a small number of
operators, but this is not a limitation inherent to our system
model. To evaluate how our analysis fares for larger graphs,
we randomly generate 50 synthetic series-parallel DAGs of
increasing size using the Open Graph Drawing Framework
(specifically the ‘randomSeriesParallelDAG’ function) [17].
We consider series-parallel DAGs because all the HoloHub
application graphs we have analyzed are series-parallel. The
set of 50 graphs we consider consists of 10 graphs with 20, 40,
60, 80, and 100 edges each. We generate 10 sets of random
execution times for these graphs for a total of 500 variations. We
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Fig. 15. Analysis time versus node count

then simulate the execution of each graph for approximately
an hour of simulated time. Fig. 13 compares the WCRTs
derived from simulation to those predicted by our algorithm.
We observe a higher, more variable degree of pessimism.

For a clearer understanding of the pessimism incurred,
Fig. 14 compares the number of edges in each graph to its
relative pessimism. The relative pessimism of the different
graphs has a weak positive correlation with edge count.
Pessimism in our analysis does not strictly scale linearly with
the size of the graph, but is rather inherent to the specific
structure of the graph. A graph with 70 nodes may suffer less
pessimism that a graph with 30, depending on the unique
structure of each. Fig. 15 shows the relationship between
node count and analysis time. While the analysis time grows
exponentially with the node count, it remains manageable even
for larger DAGs (even though we do not expect to encounter
such large DAGs for NVIDIA Holoscan applications).

VIII. RELATED WORK

Many real-time scheduling works build upon Graham’s
classic worst-case response time bound for a DAG task
described in [18]. For example, He et al. [19] dominate
the classic bound by optimizing the order in which vertices
are executed, and many other works such as [20] or [21]
use the bound as a pessimistic starting point to improve
on. These works on traditional DAG tasks only consider
precedence constraints between vertices, as their main focus
is on scheduling. In contrast, we model both upstream and
downstream constraints between subtasks, which makes the
Graham bound optimistic if applied to our problem.

More similar to the specifics of our work is the literature on
synchronous data flow (SDF), which was first formalized by
Lee et al. [22]. SDF deals with data flow between tasks whose
rates of data consumption and production are known a priori.

We believe the SDF model is general enough to allow for
the modeling of Holoscan applications, but have not found
a WCRT analysis for SDF that aligns with our objectives. A
common approach for SDF analysis is to transform the graphs
into a set of independent tasks and use existing hard-real-
time scheduling algorithms [6, 7]. These techniques rely on
assumptions incompatible with our system model. They require
that tasks are periodic with period Ti and a relative deadline Di

such that Di < Ti. This precludes the possibility of queuing,

as a task will always have either finished processing or have
violated its deadline by the time a new task arrives. As much
of our analysis depends on delays introduced by queuing and
blocking, this approach is incompatible with our model.

The authors of [8] do conduct analysis on an SDF to find
a WCRT bound, but this setting also has the aforementioned
periodic activations, in this case of a job consisting of multiple
tasks rather than independent tasks. The SDF analysis in [9]
is more similar to our own in terms of assumptions, but it
focuses on throughput, while our objective is a WCRT bound.

Also similar to our work are response-time analyses of
frameworks comparable to Holoscan, such as ROS 2. In
particular, the relation between ROS 2 components has been
modeled as a DAG in [23] and [24].

IX. CONCLUSION AND FUTURE WORK

Our novel static analysis bounds worst-case end-to-end
response times for Holoscan applications. The analysis relies on
a DAG of Holoscan operators and their scheduling conditions
dependent on communication data buffers. We derived an
upper bound for the WCRT of a linear chain of operators and
extended this approach to a DAG of operators. Our theoretical
analysis was validated against real-world applications from
the NVIDIA HoloHub, demonstrating that our WCRT bounds
closely approximate actual performance, achieving within 99%
accuracy of empirical measurements on NVIDIA hardware.

This analysis marks the first response-time analysis of
Holoscan applications, helping the development of reliable
medical devices. However, there is still pessimism inherent
to these bounds, which could be mitigated through further
refinement that relaxes some of our worst-case assumptions.
While this initial evaluation was conducted on a single
embedded platform, future work will assess the adaptability of
our theoretical framework across various SoCs. Additionally,
we plan to explore more scheduling policies that incorporate
both Linux thread and GPU task management.
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