Faster, Exact, More General Response-time Analysis for NVIDIA Holoscan Applications

Philip Schowitz, Shubhaankar Sharma, Siddharth Balodi, Bruce Shepherd, Arpan Gujarati The University of British Columbia Soham Sinha

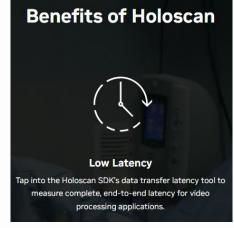
Edge Computing

- Al is fueling resourceintensive applications on the edge
- Embedded platforms
 become more complex
 - Harder to develop apps

Frameworks

Frameworks like NVIDIA
 Holoscan streamline
 development

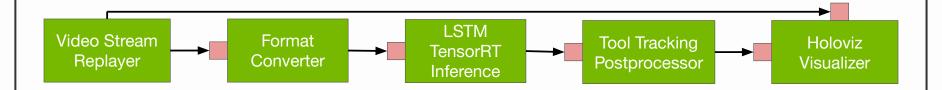
- Lacks hard latency guarantees
 - Potential for framework-level analysis



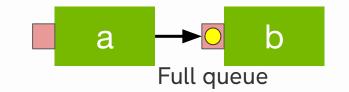
Why care about latency analysis?

- Developers lack knowledge about framework timing properties but want low latency
 - Medical imaging, robotics
 - In the future, robotic surgery
- Create static analysis to allow informed decisions
 - E.g., what will be the timing effect of adding this node?
 - Useful during both design and development stages

Holoscan Basics



- Apps are represented as directed acyclic graphs
- App can process multiple inputs in parallel
 - Each node only processes one item at a time
 - Assume we can run all nodes at once
 - No node-to-core scheduling



- Holoscan applications use a unique DAG model with downstream conditions
 - Node cannot begin execution if downstream queue is full

- Holoscan applications use a unique DAG model with downstream conditions
 - Node cannot begin execution if downstream queue is full

- Holoscan applications use a unique DAG model with downstream conditions
 - Node cannot begin execution if downstream queue is full

- Holoscan applications use a unique DAG model with downstream conditions
 - Node cannot begin execution if downstream queue is full
 - Implements static backpressure, maintains internal consistency by preventing queue overflow

- Holoscan applications use a unique DAG model with downstream conditions
 - Node cannot begin execution if downstream queue is full
 - Implements static backpressure, maintains internal consistency by preventing queue overflow
- This design creates timing anomalies
 - Lower node execution time -> higher global response time

Prior Work

- We created a response time analysis for this model
 - Safe upper bound, scalable

Prior Work

- We created a response time analysis for this model
 - Safe upper bound, scalable
- However...
 - Pessimistic for some graphs
 - Static execution time, queue size must equal 1
 - Unclear connection to SDFG literature

Prior Work

Metric	Prior RTA
Runtime	$51\mu s$
Pessimism	20.5%
Safe	\checkmark
Exact	X
Variable Execution Time	X
Variable Queue Size	X

Specific 9-node graph with pessimism

Contributions

Metric	Prior RTA	Prior RTA Synchronous Dataflow	
Runtime	$51\mu s$	6055s	
Pessimism	20.5%	0%	
Safe	\checkmark	✓	
Exact	×	✓	
Variable Execution Time	×	✓	
Variable Queue Size	×	✓	

Specific 9-node graph with pessimism

Contributions

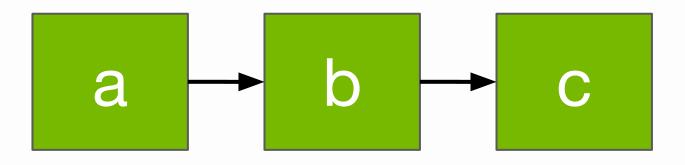
Metric	Prior RTA	Synchronous Dataflow	This work
Runtime	$51\mu s$	6055s	136ms
Pessimism	20.5%	0%	0%
Safe	\checkmark	✓	\checkmark
Exact	×	✓	\checkmark
Variable Execution Time	×	✓	\checkmark
Variable Queue Size	X	✓	\checkmark

Specific 9-node graph with pessimism

Response-Time Analysis

Problem Statement

- What is the largest possible difference in time between source (a) starting and sink (c) starting?
 - In some iteration x, the difference is: $s(c_x) s(a_x)$
 - Can trivially add back sink's exec to get the WCRT



Trace Graph

First iteration or input

Trace Graph

a → b → c

First iteration or input

a₁

b₁

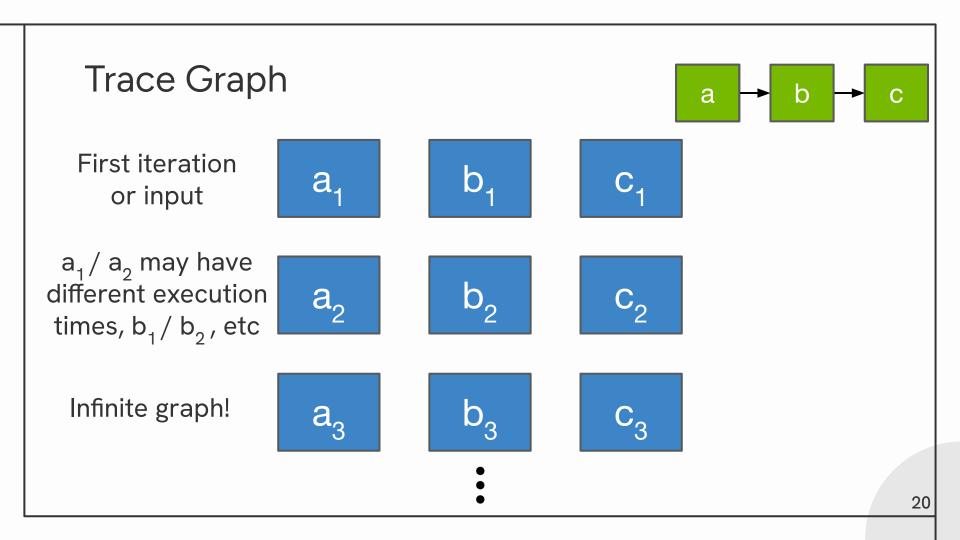
C₁

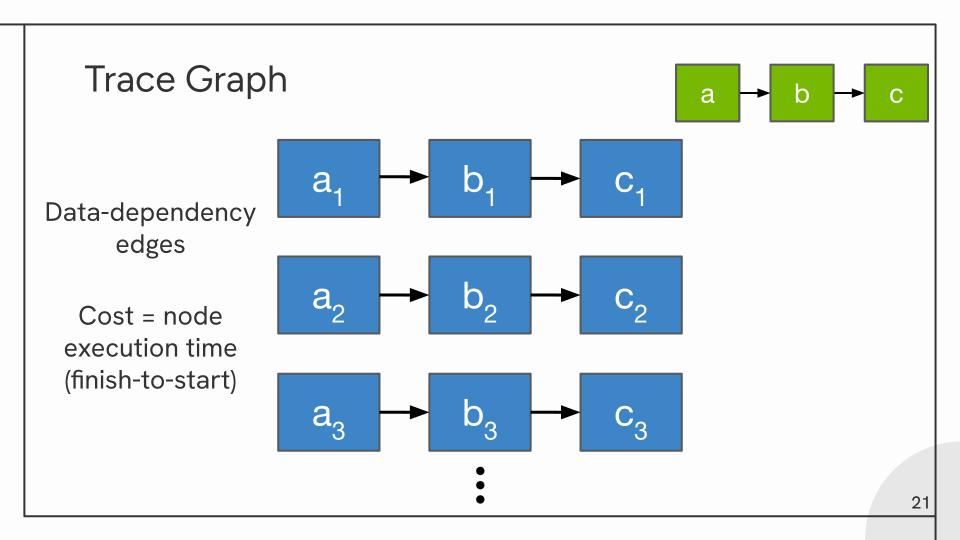
 a_1/a_2 may have different execution times, b_1/b_2 , etc

 a_2

b

C

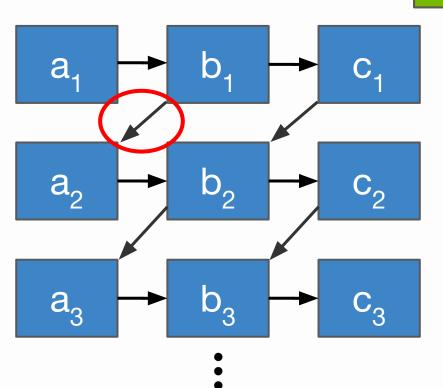




 $a \rightarrow b \rightarrow c$

Downstream blocking edges (backpressure)

Cost = 0 (start-to-start)

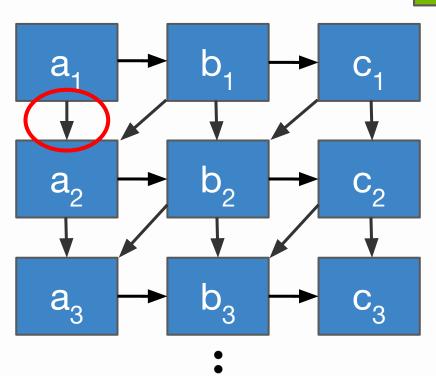


Trace Graph

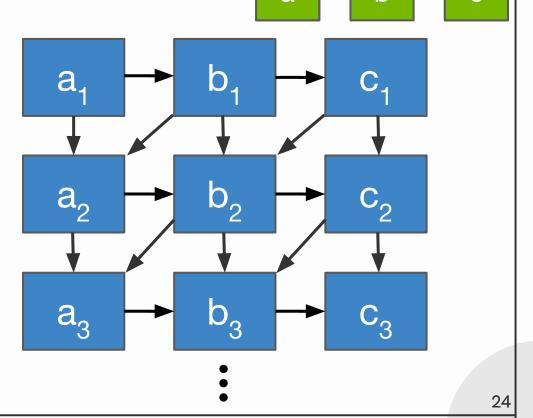
 $a \rightarrow b \rightarrow c$

Sequentialexecution edges

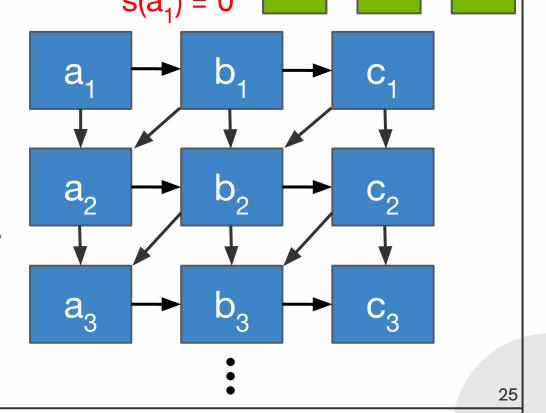
Cost = node execution time (finish-to-start)



- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute

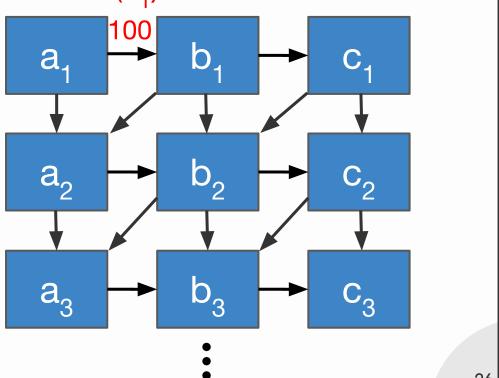


- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute



b

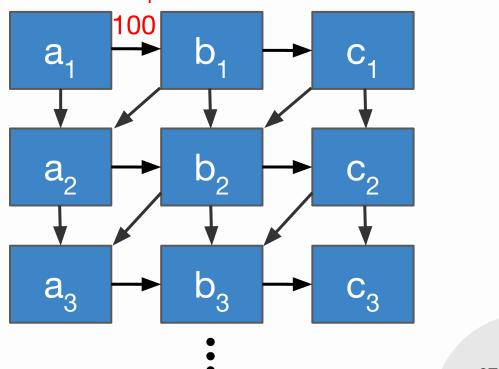
- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute



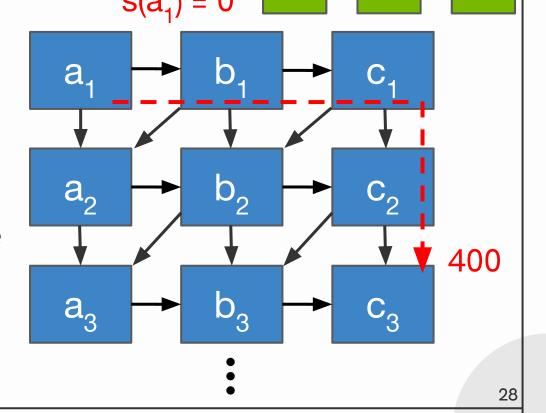
b

Key Trace Graph Property $\frac{s(b_1) = 100}{s(a_1) = 0}$

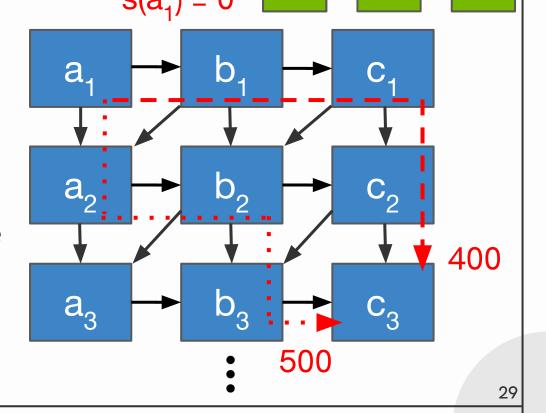
- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute



- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute

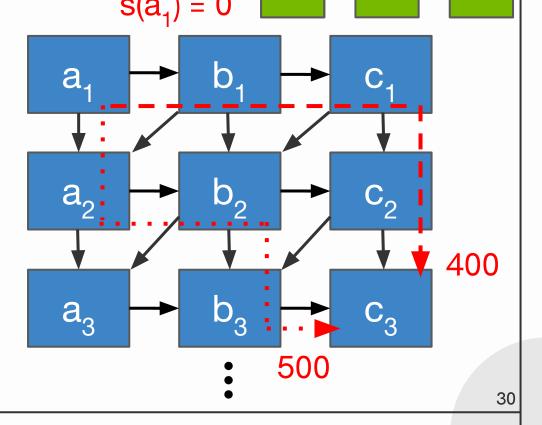


- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute



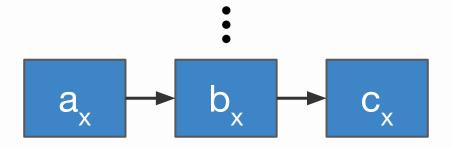
- Longest path from source (a₁) defines a node's start time
 - Preconditions must be met before node may execute

$$s(c_3) = 500$$

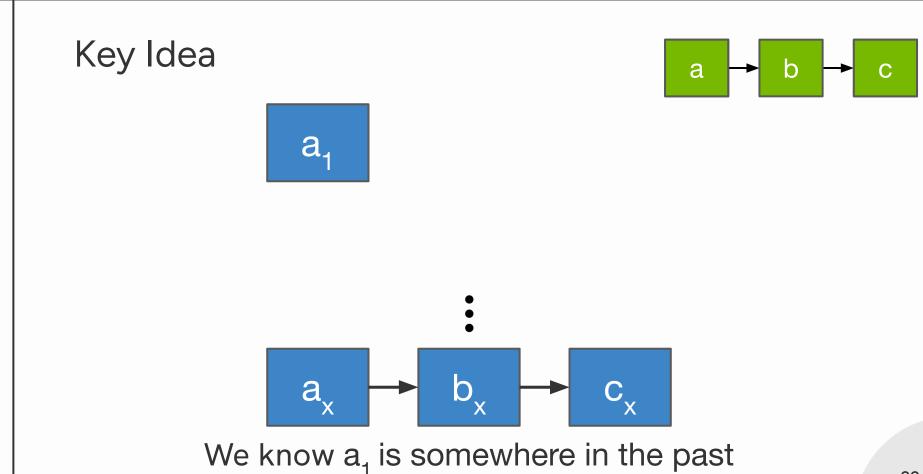


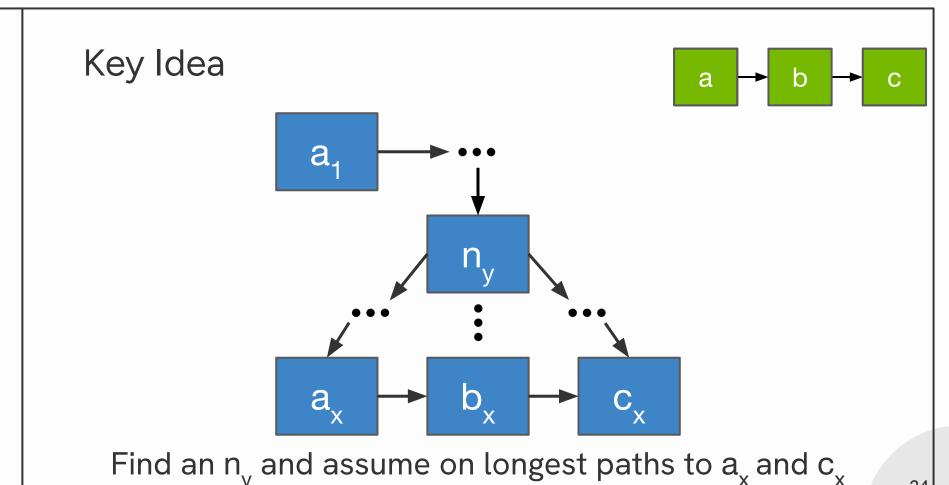
How can we leverage the trace graph for a response-time bound?

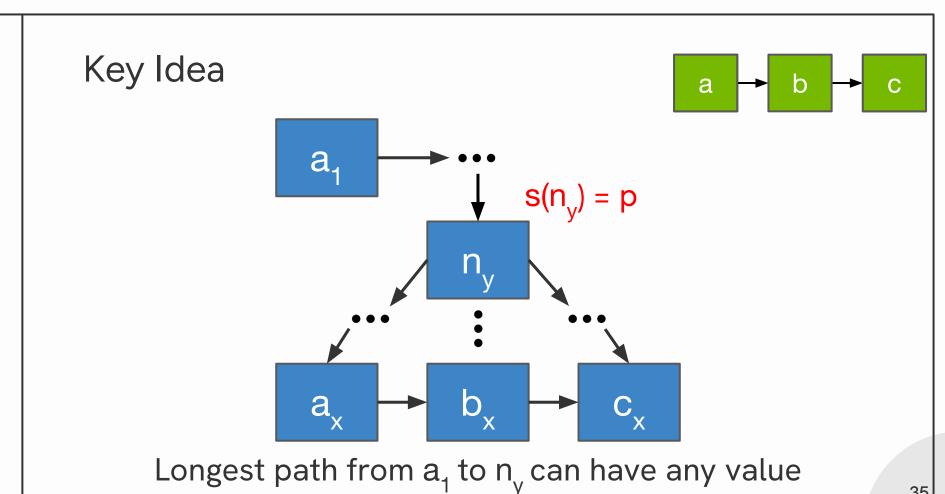
Key Idea

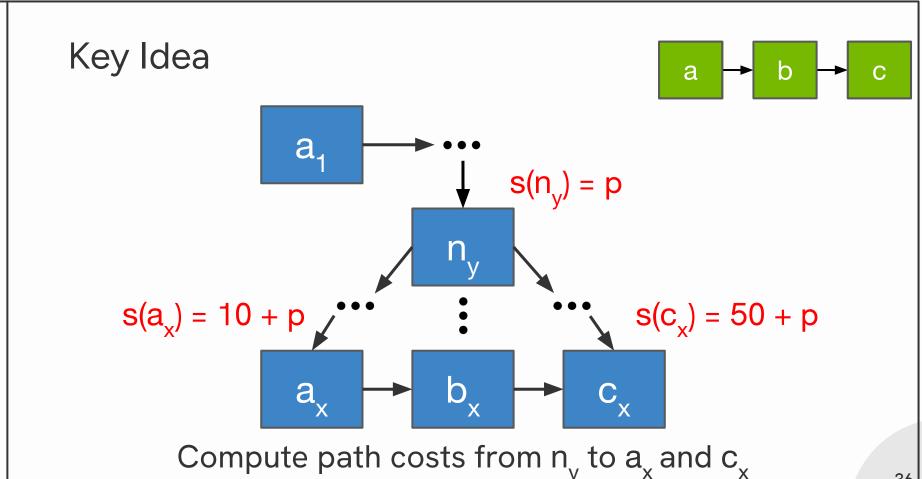


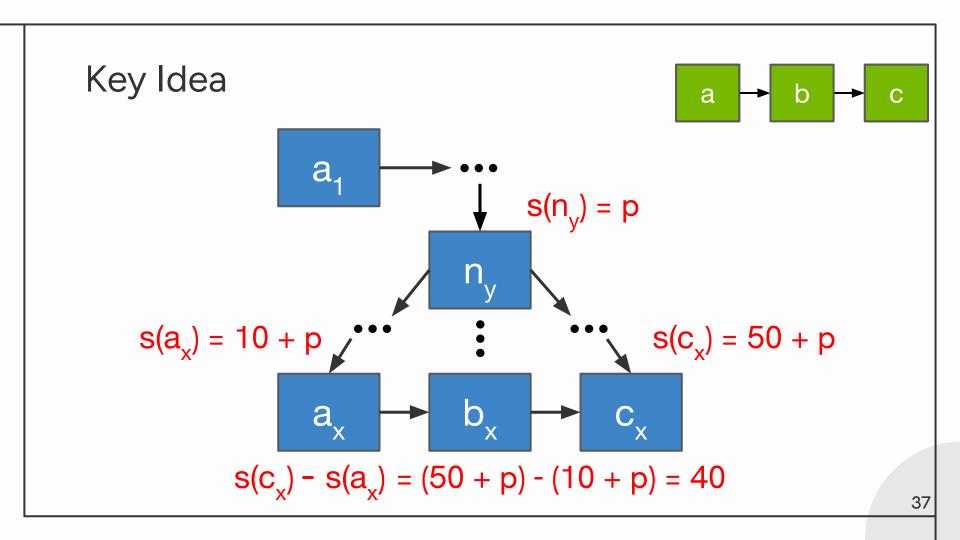
Assume the WCRT happens in iteration x

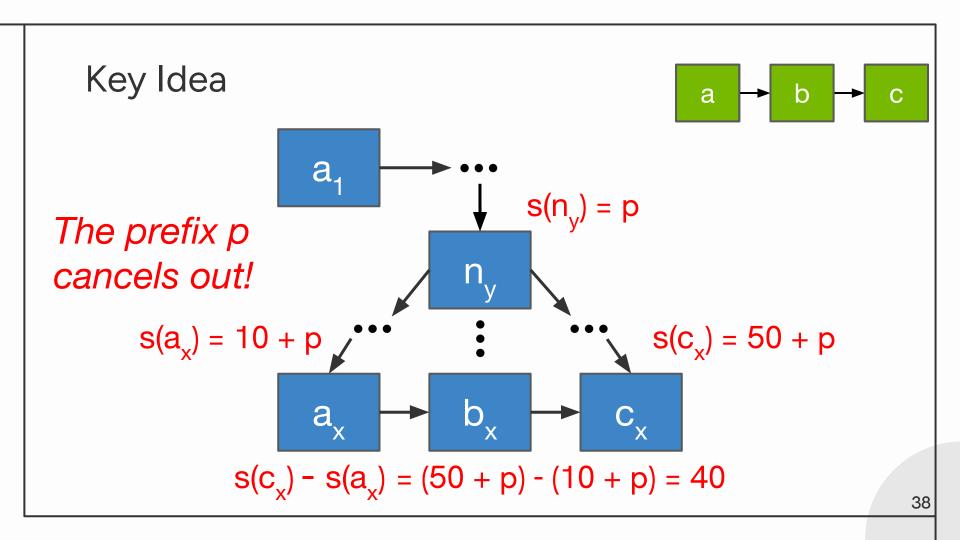












How can we leverage this insight to get a simple response-time algorithm?

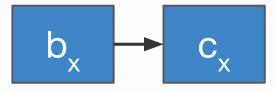
- High-level overview: Start from an arbitrary iteration x, backtrack to find shared ancestors of the iteration x source and sink, and take differences of the paths from ancestor to source
 - Loop over the set of most recent shared ancestors

Algorithm

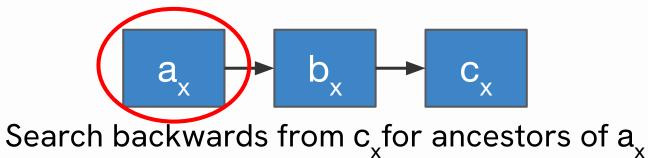
- 1. Find most recent shared ancestors
 - a. Lemma: all paths to c_x from a_1 have an ancestor of a_x within a bounded number of iterations from x

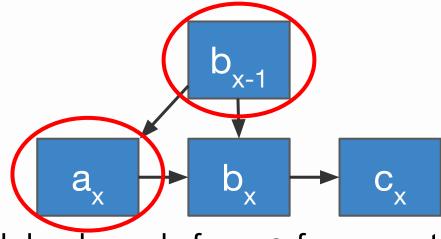
C_X

Search backwards from c_x for ancestors of a_x

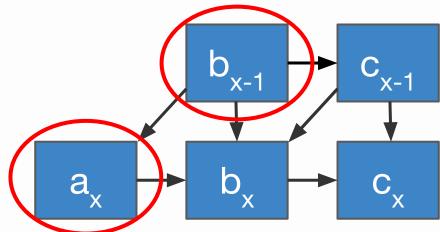


Search backwards from c_x for ancestors of a_x

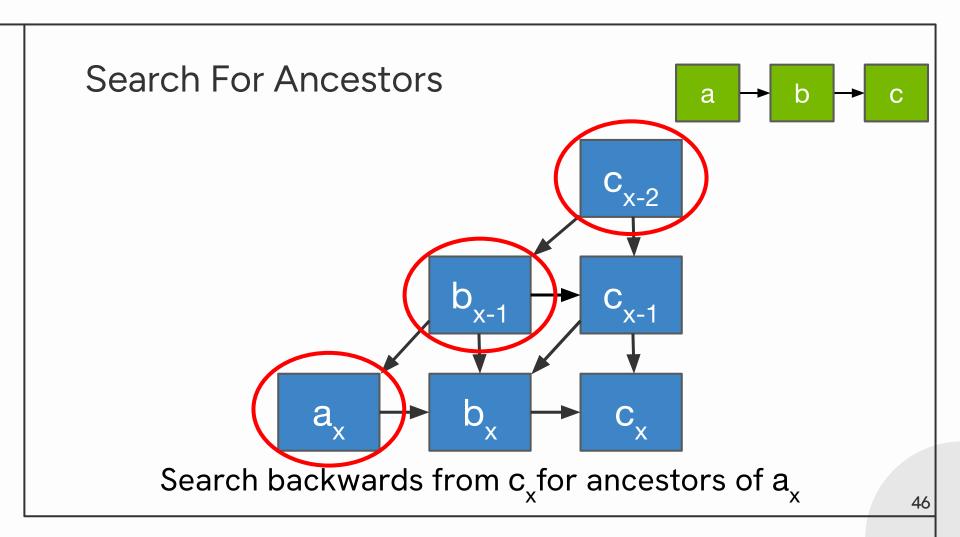


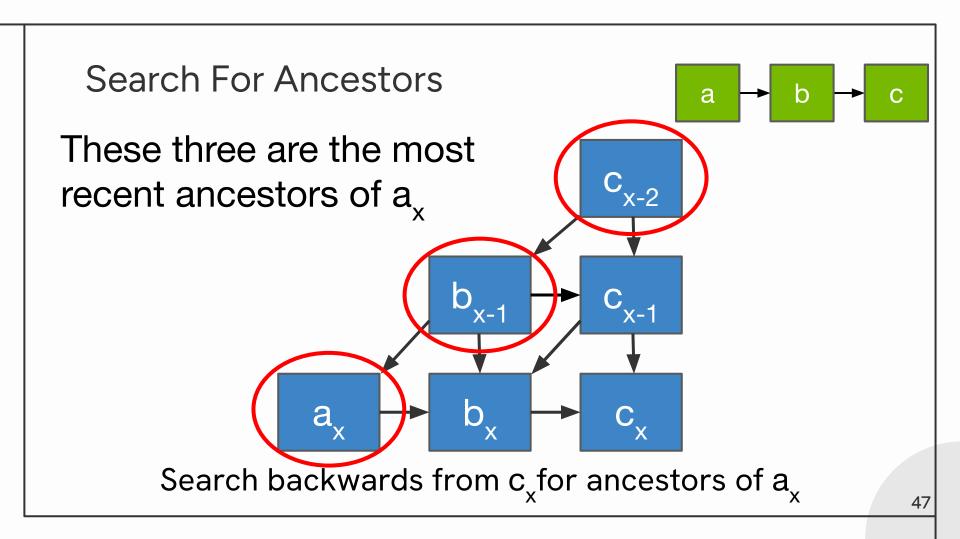


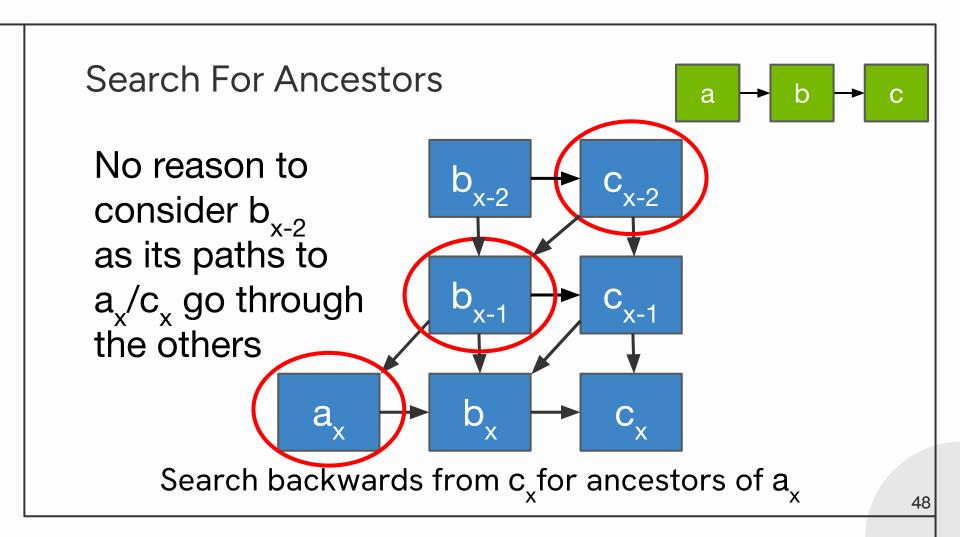
Search backwards from c_x for ancestors of a_x

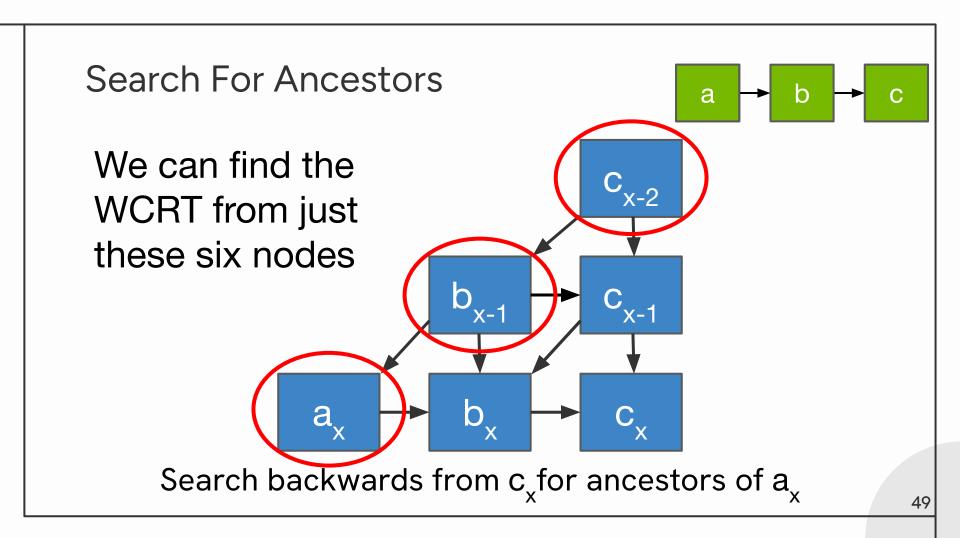


Search backwards from c_x for ancestors of a_x



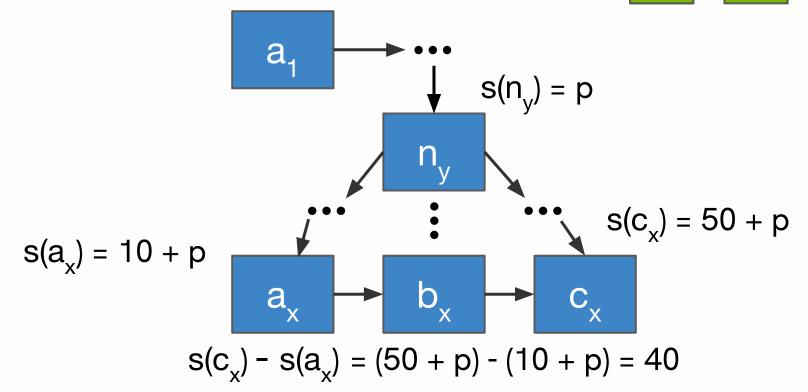






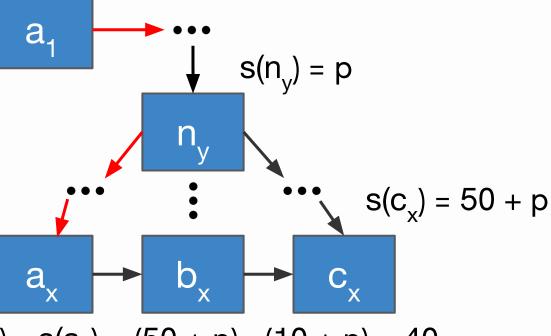
Algorithm

- 1. Find most recent shared ancestors
 - a. Lemma: all paths to c_x from a_1 have an ancestor of a_x within a bounded number of iterations from x
- 2. Get the response time assuming each ancestor found in step 1 is on the longest path to c_x



Assumed longest path to a_x came from n_v !

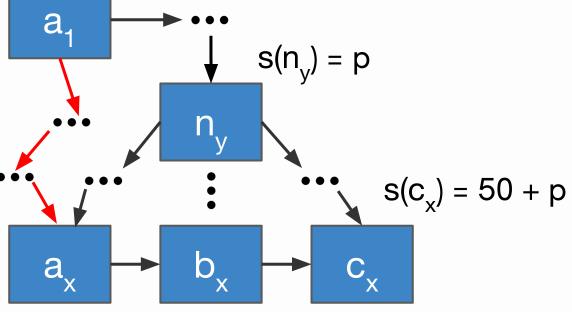
$$s(a_x) = 10 + p$$



$$s(c_x) - s(a_x) = (50 + p) - (10 + p) = 40$$

Assumed longest path to a_x came from n_v !

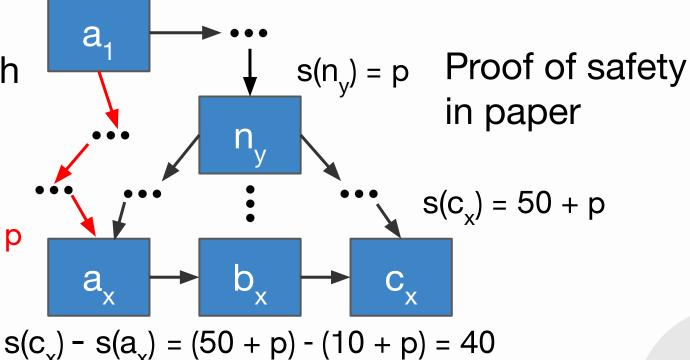
$$s(a_x) = 10 + p$$



$$s(c_x) - s(a_x) = (50 + p) - (10 + p) = 40$$

Assumed longest path to a_x came from n_v!

$$s(a_x) = 10 + p$$



Algorithm

- 1. Find most recent shared ancestors
 - a. Lemma: all paths to c_x from a_1 have an ancestor of a_x within a bounded number of iterations from x
- 2. Get the response time assuming each ancestor found in step 1 is on the longest path to c_x
- 3. Max of all candidate response times is WCRT

Exactness

- Our response-time bound is also exact (proof in paper)
 - We create a configuration of valid edge costs that yield the same response-time as our bound (needs 0 execution times)
- Supports variable execution time
- Supports variable queue sizes
 - This and other modifications are possible by altering the rules of how edges are drawn between nodes

Scalability

UPPAAL: 6000 seconds for 9 node graph

Unoptimized algorithm



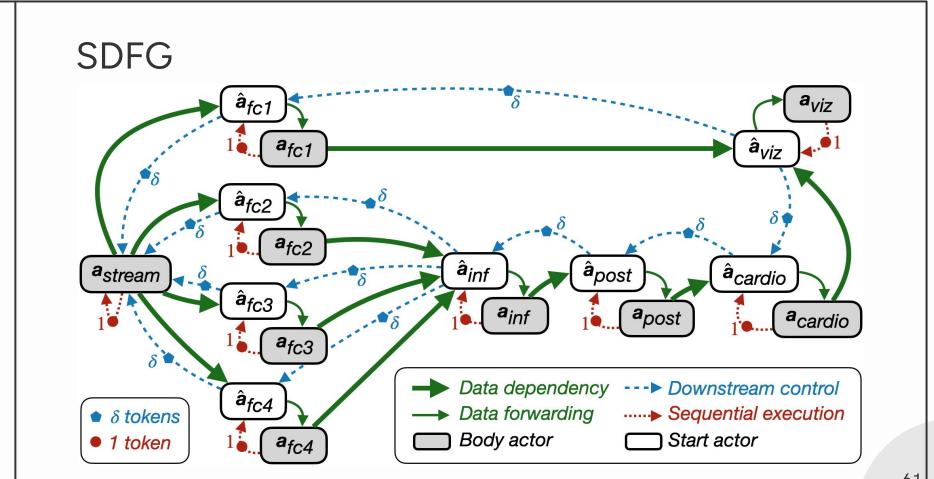
Conclusion

- Novel response-time analysis for DAGs with static backpressure: exact, fast, variable execution time
- Show equivalence between DAG model and SDFGs
 - Can solve problem via model checking, but this is slow
- WiP: Incorporating GPU interactions
- Future work: Scheduling

Conclusion Thank you for listening! Questions?

- Novel response-time analysis for DAGs with static backpressure: exact, fast, variable execution time
- Show equivalence between DAG model and SDFGs
 - Can solve problem via model checking, but this is slow
- WiP: Incorporating GPU interactions
- Future work: Scheduling

Backup



a₁

 $s(n_v) = p$

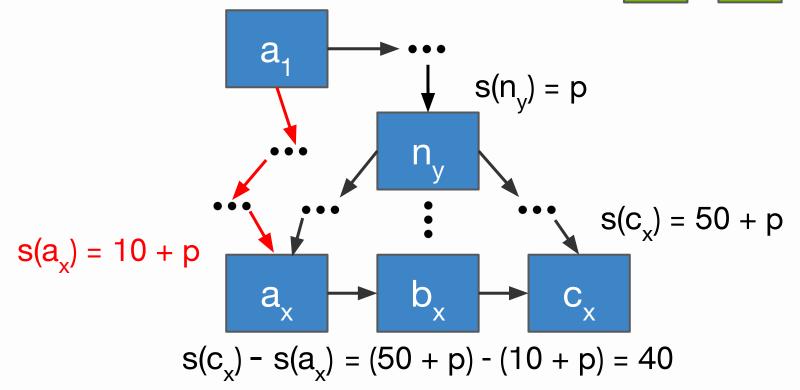
Two cases: longest path to a_x is either from n_y or not

from
$$n_y$$
 or not
$$s(a_x) = 10 + p$$

$$a_x = b_x$$

$$c_x$$

 $s(c_x) - s(a_x) = (50 + p) - (10 + p) = 40$



Response-Time Bound New path a, $s(n_v) = p$ with length q dominates $s(c_x) = 50 + p$ $s(a_x) =$ q > 10 + p $s(c_y) - s(a_x) = (50 + p) - (10 + p) = 40$

Response-Time Bound But this a, $s(n_v) = p$ decreases response time $s(c_x) = 50 + p$ $s(a_x) =$ q > 10 + p $s(c_y) - s(a_y) (50 + p) - (10 + p) = 40$ 65

Response-Time Bound If n_y is on a, $s(n_v) = p$ longest path to c_x: RT <= 40 $s(c_x) = 50 + p$ $s(a_x) =$ q > 10 + p $s(c_y) - s(a_y) < (50 + p) - (10 + p) = 40$ 66