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Training Data Faults in Practice

70% of Lyft dataset missing, 20% of ChestX-ray mislabelled
mislabelled [Kang et al, 2022] [Tang et al, 2021]

Autonomous Vehicles Healthcare




Training Data Faults
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Autonomous Vehicle Example
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Random Mislabelling
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Resilience against Faulty Training Data
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How to mitigate training data faults
with minimal human effort?

@ 1 La be| Correction More Practitioner Effort
® .

2. Knowledge Distillation
3. Robust Loss
4. Label Smoothing

5 . En sem b | es Less Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques
against Faulty Training Data in ML Applications [DSN’22]




How to mitigate training data faults
with minimal human effort?
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Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques
against Faulty Training Data in ML Applications [DSN’22]




How to mitigate training data faults
: with minimal human effort?

Our Solution: Building Resilient Ensembles

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques
against Faulty Training Data in ML Applications [DSN’22]




Resilient Ensembles
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Our Prior Work: Understanding the Resilience of Neural Network
Ensembles against Faulty Training Data [Chan, QRS’21]
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Resilient Ensembles - Diversity
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This Paper: D-semble to efficiently find resilient ensembles
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Resilience Gap between Ensembles
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Resilience Gap between Ensembles
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Resilience Gap between Ensembles
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Contributions — SAC 2025

Diversity Operators
Diversity-Guided Evolutionary Search

Evaluation of D-semble against Real-Life
Fault Distributions



Contributions — SAC 2025

1. Diversity Operators



Diversity Operators
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Diversity Operators — Architecture
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Diversity Operators — Data Subsets

Diversity
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Diversity Operators — Snapshots
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Automated Ensemble Search?
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Automated Ensemble Search?

Exponential Factorial

Search Space!
=~ 1 week for CIFAR-10
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Contributions — SAC 2025

2. Diversity-Guided Evolutionary Search



Fault Model
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Heuristic for Ensemble Resilience?
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Can Diversity Predict Resilience at Higher Fault Amounts?
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Observation: Diversity and Resilience are strongly correlated
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Diversity as a Heuristic
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D-semble: Evolutionary Search
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Contributions — SAC 2025

3. Evaluation of D-semble against Real-Life
Fault Distributions



Evaluation Datasets

CIFAR-10
Object Detection

W

GTSRB Pneumonia
Self-Driving Cars Medical Diagnosis

|

Safety-Critical Applications
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Neural Networks

ML Model Name Depth (# of Layers)
ConvNet Shallow
DeconvNet Shallow
MobileNet Deep

ResNet18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep



Resilience Metrics

Balanced Accuracy
— Compatible with imbalanced multi-class datasets

F1 score

— Focus more on false positives/negatives than true
negatives (e.g. Pneumonia [focus case] vs Normal)
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RQ2: Resilience by Diversity Operator

Observation: No single diversity operator consistently
offers the highest resilience




RQ5: Resilience by Search Time
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RQ5: Resilience by Search Time
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RQ5: Resilience by Search Time

Dataset:
GTSRB

Balanced Accuracy (BA)

1.0

0.8 1

0.7

] == Random

-@— D-semble

=$— D-semble w/o H
Bagging

-l Greedy

=% : |Individual

0

250 500 750 1000 1250 1500 1750 2000
Time (s)

D-semble

1.4x faster
to reach
saturation

D-semble w/o

Diversity
Heuristic

36



Summary

Problem: How to efficiently find resilient ensembles?

Approach: (D-semble) Diversity-guided ensemble search to
maximize resilience

Results: D-semble finds ensembles 9% more resilient against
bagging (best baseline)

Email: abrahamc@ece.ubc.ca

Website: https://people.ece.ubc.ca/abrahamc/

37



