D-semble: Efficient Diversity-Guided Search for Resilient ML En<u>semble</u>s

Abraham Chan,

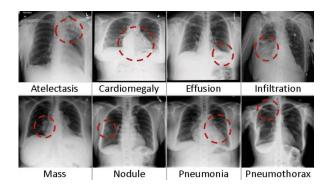
Arpan Gujarati, Karthik Pattabiraman, Sathish Gopalakrishnan

Training Data Faults in Practice

70% of Lyft dataset missing, mislabelled [Kang et al, 2022]

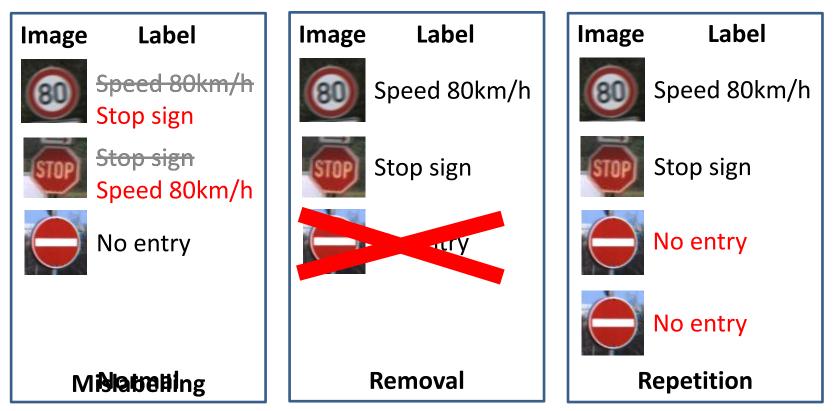
Autonomous Vehicles

20% of ChestX-ray mislabelled [Tang et al, 2021]

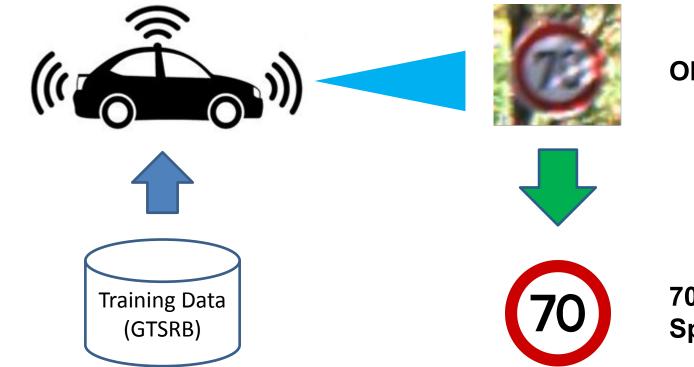


Healthcare

Training Data Faults



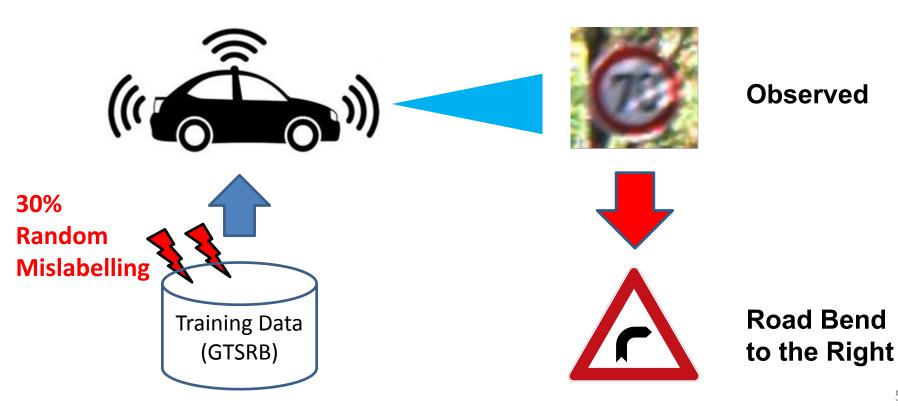
Autonomous Vehicle Example



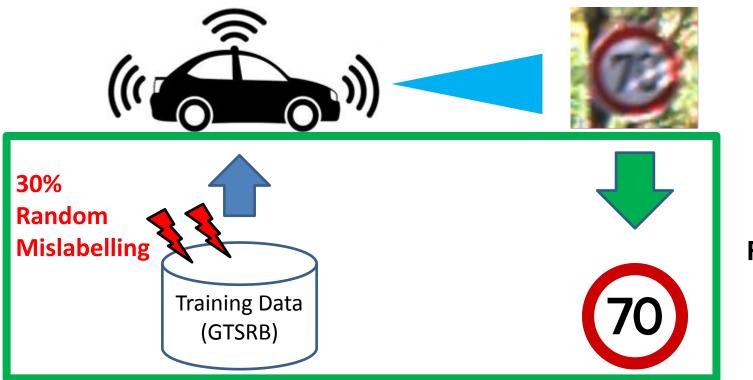
Observed

70 km/h Speed Limit

Random Mislabelling



Resilience against Faulty Training Data



Resilience

How to mitigate training data faults with minimal human effort?

- 1. Label Correction
- 2. Knowledge Distillation
- 3. Robust Loss
- 4. Label Smoothing
- 5. Ensembles

Less Practitioner Effort

More Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications **[DSN'22]**

How to mitigate training data faults with minimal human effort?

- 1. Label Correction
- 2. Knowledge Distillation
- 3. Robust Loss
- 4. Label Smoothing
- 5. Ensembles

Less Practitioner Effort

More Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications **[DSN'22]**

How to mitigate training data faults with minimal human effort?

Label Correction

Knowladge Distillation

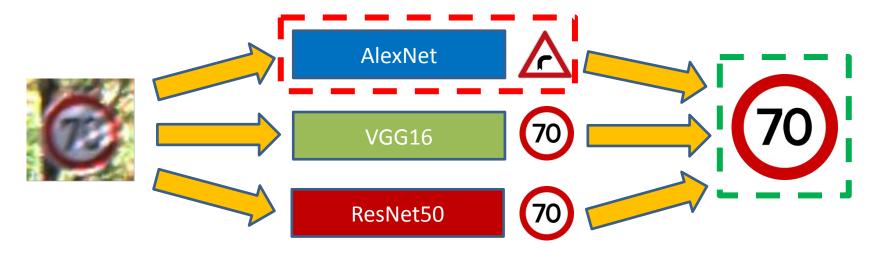
Our Solution: Building Resilient Ensembles

F. Laber Smoothing

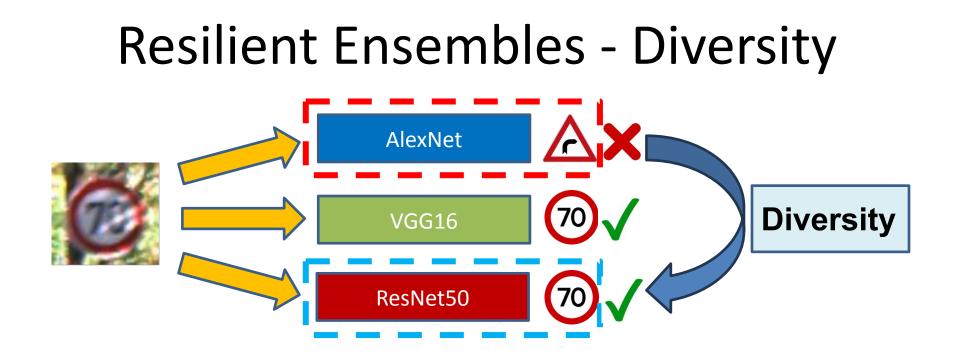
5. Ensembles

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications **[DSN'22]**

Resilient Ensembles

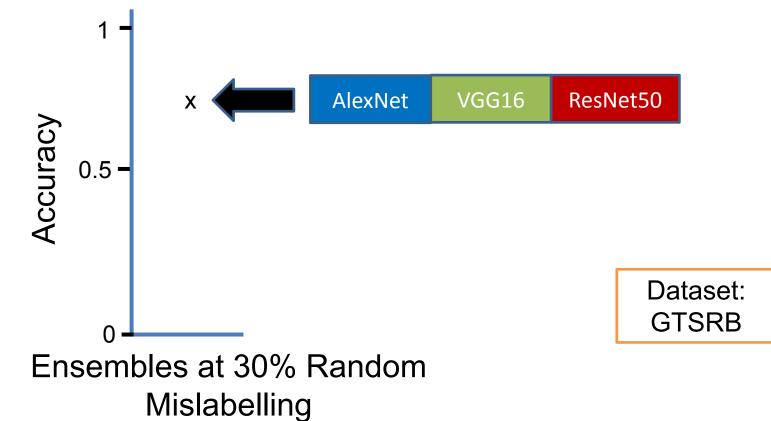


Our Prior Work: Understanding the Resilience of Neural Network Ensembles against Faulty Training Data **[Chan, QRS'21]**

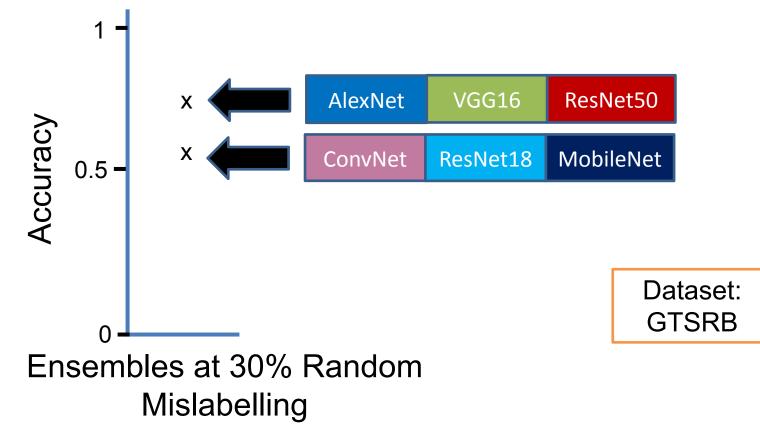


This Paper: D-semble to efficiently find resilient ensembles

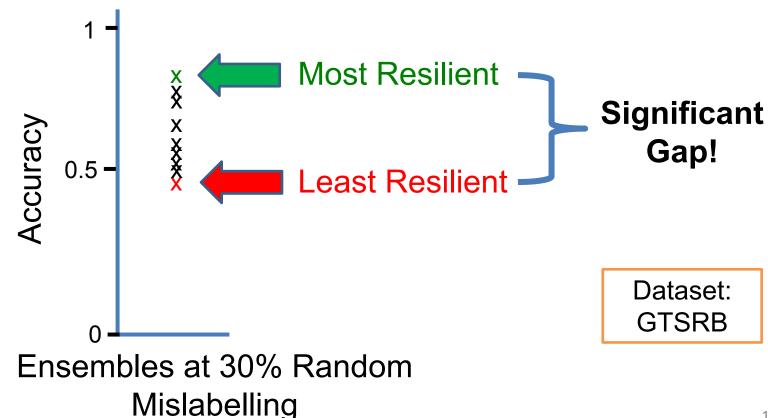
Resilience Gap between Ensembles



Resilience Gap between Ensembles



Resilience Gap between Ensembles



Contributions – SAC 2025

1. Diversity Operators

2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life Fault Distributions

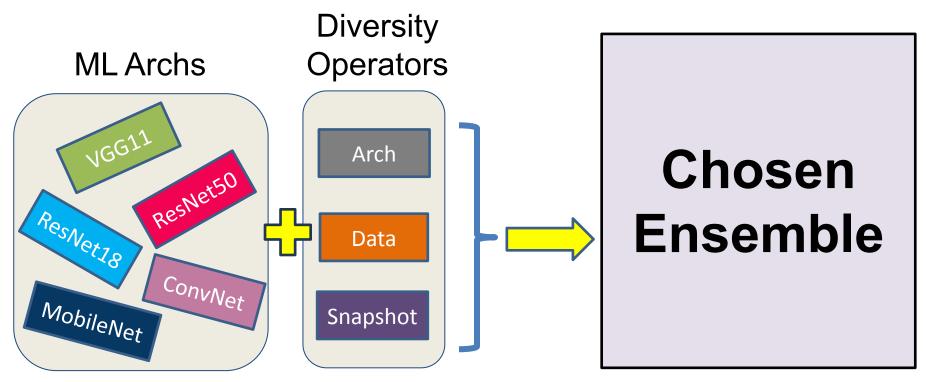
Contributions – SAC 2025

1. **Diversity Operators**

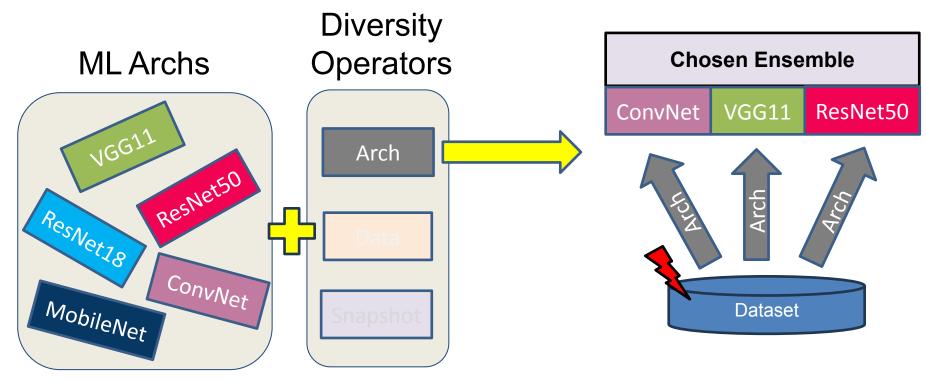
2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life Fault Distributions

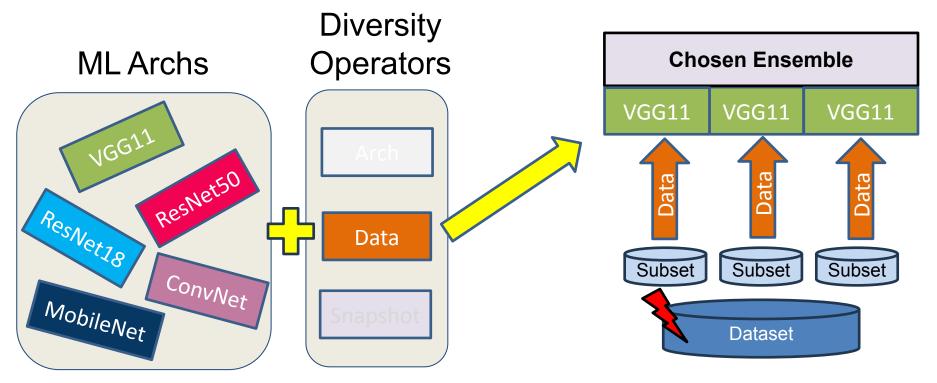
Diversity Operators



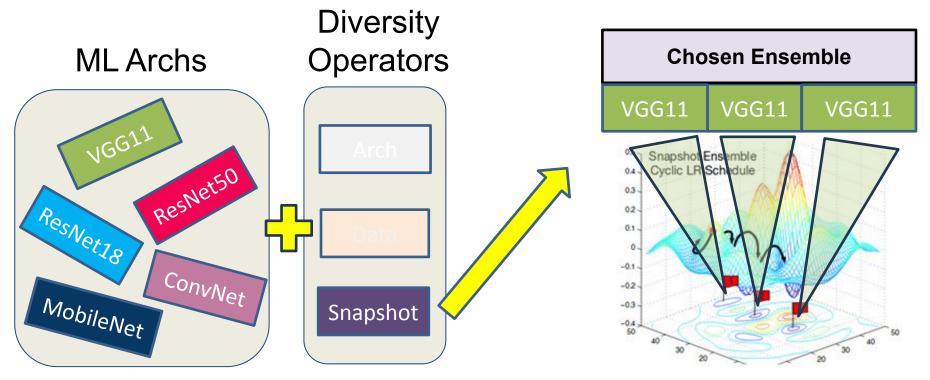
Diversity Operators – Architecture



Diversity Operators – Data Subsets

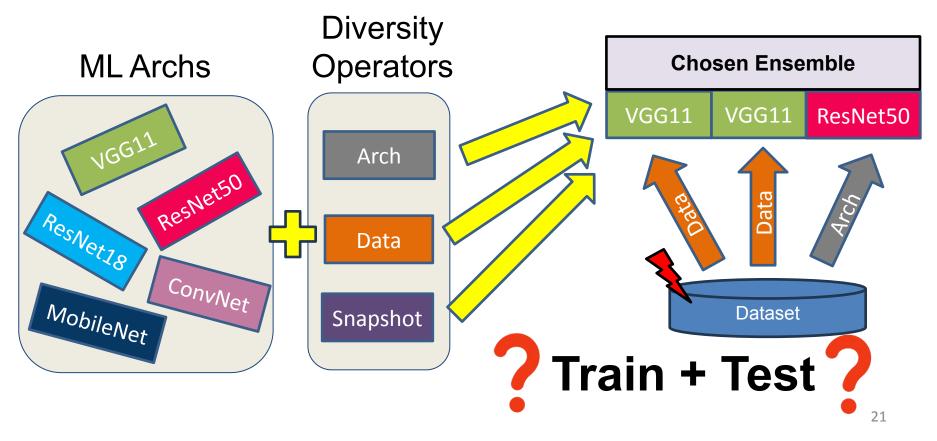


Diversity Operators – Snapshots

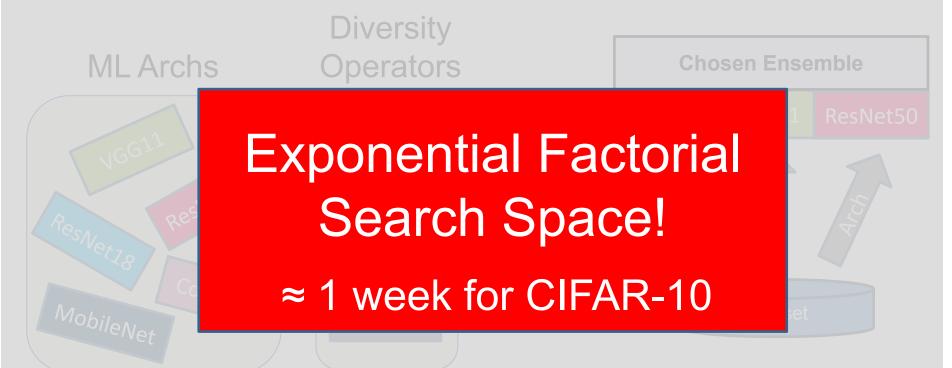


Huang et al., (2017) Snapshot Ensembles: Train 1, get M for free. 20

Automated Ensemble Search?



Automated Ensemble Search?



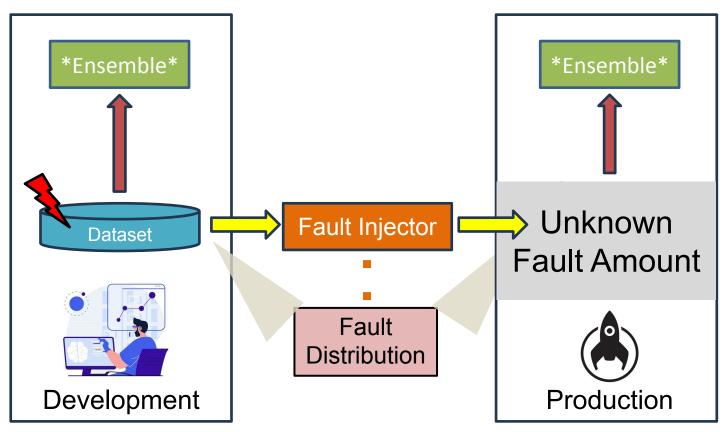
Contributions – SAC 2025

1. Diversity Operators

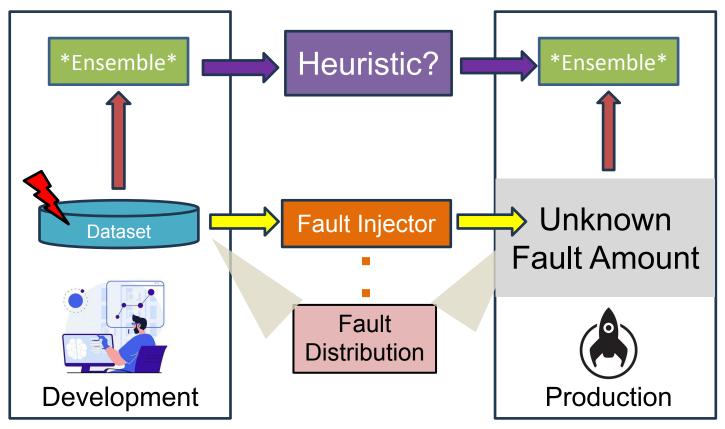
2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life Fault Distributions

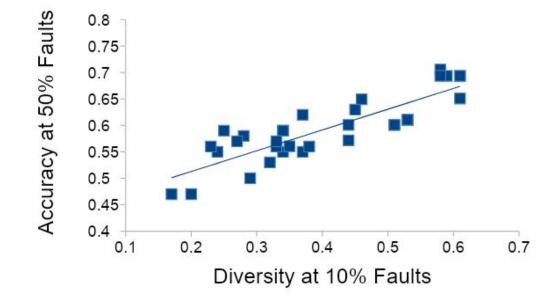
Fault Model



Heuristic for Ensemble Resilience?

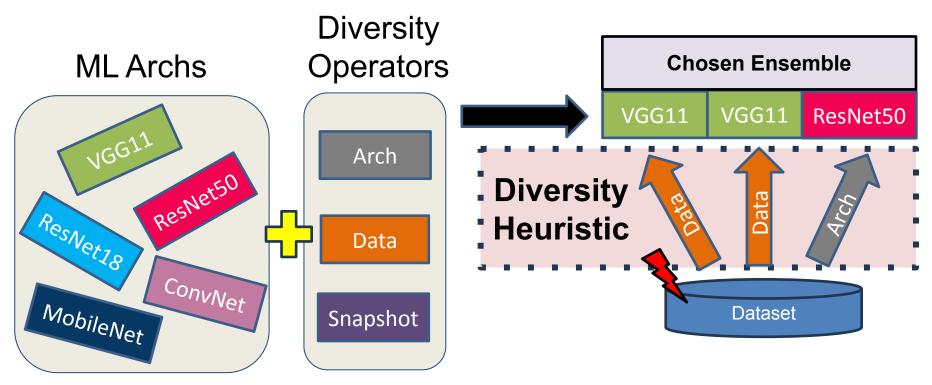


Can Diversity Predict Resilience at Higher Fault Amounts?



Observation: Diversity and Resilience are strongly correlated

Diversity as a Heuristic



D-semble: Evolutionary Search Diversity **ML** Archs Operators **Chosen Ensemble VGG**11 VGG11 ResNet50 VGG11 Arch ResNet50 Diversity ResNet18 Heuristic Data ConvNet MobileNet Dataset Snapshot Genetic Algorithm

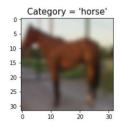
Contributions – SAC 2025

1. Diversity Operators

2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life Fault Distributions

Evaluation Datasets



CIFAR-10 Object Detection GTSRB Self-Driving Cars

Pneumonia Medical Diagnosis

Safety-Critical Applications

Neural Networks

ML Model Name	Depth (# of Layers)
ConvNet	Shallow
DeconvNet	Shallow
MobileNet	Deep
ResNet18	Deep
ResNet50	Deep
VGG11	Deep
VGG16	Deep

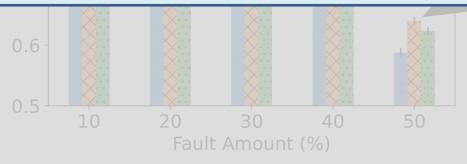
Resilience Metrics

- Balanced Accuracy
 - Compatible with imbalanced multi-class datasets

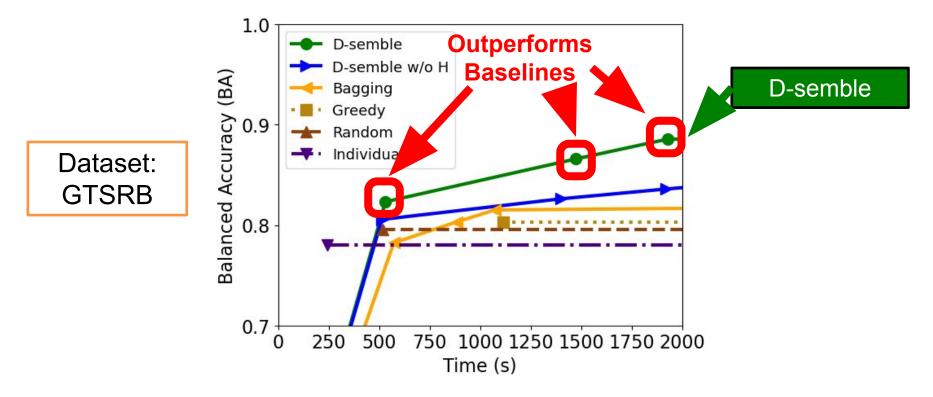
- F1 score
 - Focus more on false positives/negatives than true negatives (e.g. Pneumonia [focus case] vs Normal)

RQ2: Resilience by Diversity Operator

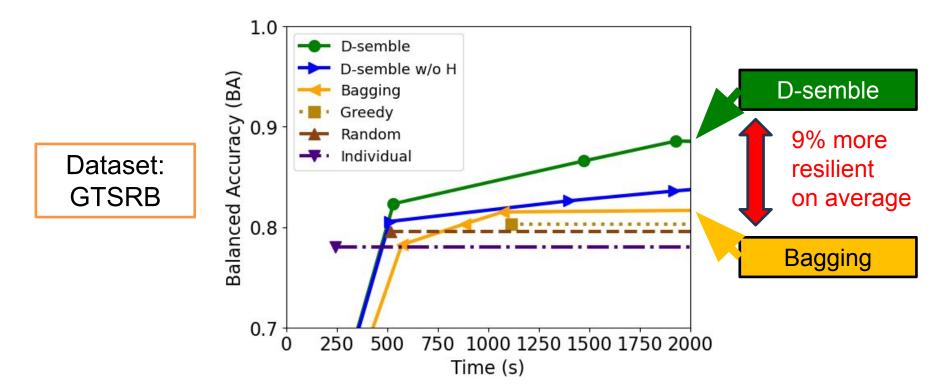
Observation: No single diversity operator consistently offers the highest resilience



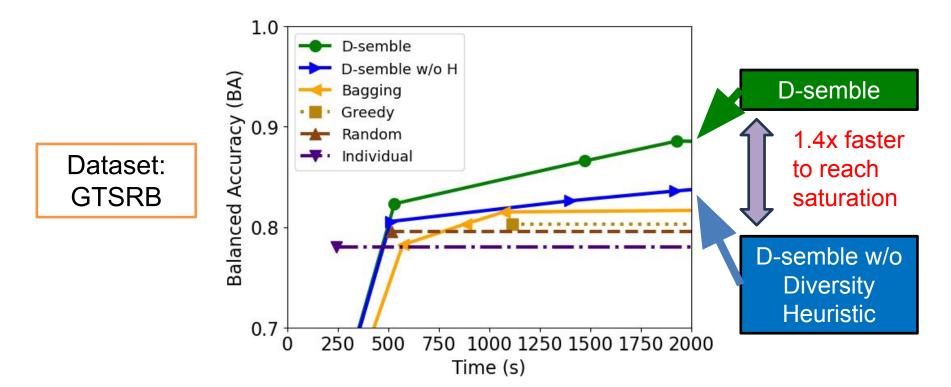
RQ5: Resilience by Search Time



RQ5: Resilience by Search Time



RQ5: Resilience by Search Time



Summary

- **1. Problem:** How to efficiently find resilient ensembles?
- 2. Approach: (D-semble) Diversity-guided ensemble search to maximize resilience
- **3. Results: D-semble** finds ensembles 9% more resilient against bagging (best baseline)

Email: abrahamc@ece.ubc.ca Website: https://people.ece.ubc.ca/abrahamc/

