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Training Data Faults in Practice
70% of Lyft dataset missing, 
mislabelled [Kang et al, 2022]
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20% of ChestX-ray mislabelled 
[Tang et al, 2021]

HealthcareAutonomous Vehicles



Training Data Faults
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Autonomous Vehicle Example
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Random Mislabelling
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Resilience against Faulty Training Data
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How to mitigate training data faults 
with minimal human effort?
1. Label Correction

2. Knowledge Distillation

3. Robust Loss

4. Label Smoothing

5. Ensembles

More Practitioner Effort

Less Practitioner Effort

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques 
against Faulty Training Data in ML Applications [DSN’22]
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1. Label Correction

2. Knowledge Distillation

3. Robust Loss

4. Label Smoothing

5. Ensembles

Our Solution: Building Resilient Ensembles

How to mitigate training data faults 
with minimal human effort?

Our Prior Work: The Fault in Our Data Stars: Studying Mitigation Techniques 
against Faulty Training Data in ML Applications [DSN’22]
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AlexNet

VGG16

ResNet50

Our Prior Work: Understanding the Resilience of Neural Network 
Ensembles against Faulty Training Data [Chan, QRS’21]

Resilient Ensembles
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AlexNet

VGG16

ResNet50

Resilient Ensembles - Diversity

Diversity

This Paper: D-semble to efficiently find resilient ensembles
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Resilience Gap between Ensembles

A
cc

ur
ac

y

0

1

x

0.5

Ensembles at 30% Random 
Mislabelling

AlexNet VGG16 ResNet50

Dataset: 
GTSRB



13

Resilience Gap between Ensembles
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Resilience Gap between Ensembles
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Contributions – SAC 2025

1. Diversity Operators

2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life 
Fault Distributions
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Diversity Operators
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Diversity Operators – Architecture
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VGG11

Diversity Operators – Data Subsets
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Diversity Operators – Snapshots
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Snapshot Ensembles: Train 1, get M for free.



Automated Ensemble Search?
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Automated Ensemble Search?
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Contributions – SAC 2025

1. Diversity Operators

2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life 
Fault Distributions
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Fault Model
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Heuristic for Ensemble Resilience?
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Can Diversity Predict Resilience at Higher Fault Amounts?
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Observation: Diversity and Resilience are strongly correlated



Diversity as a Heuristic
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D-semble: Evolutionary Search
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Contributions – SAC 2025

1. Diversity Operators

2. Diversity-Guided Evolutionary Search

3. Evaluation of D-semble against Real-Life 
Fault Distributions
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Evaluation Datasets
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CIFAR-10
Object Detection

GTSRB
Self-Driving Cars

Pneumonia
Medical Diagnosis

Safety-Critical Applications



Neural Networks
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ML Model Name Depth (# of Layers)

ConvNet Shallow

DeconvNet Shallow

MobileNet Deep

ResNet18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep



Resilience Metrics

• Balanced Accuracy
– Compatible with imbalanced multi-class datasets

• F1 score
– Focus more on false positives/negatives than true 

negatives (e.g. Pneumonia [focus case] vs Normal)
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RQ2: Resilience by Diversity Operator
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Observation: No single diversity operator consistently 
offers the highest resilience



RQ5: Resilience by Search Time
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RQ5: Resilience by Search Time
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RQ5: Resilience by Search Time
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Summary
1. Problem: How to efficiently find resilient ensembles?

2. Approach: (D-semble) Diversity-guided ensemble search to 
maximize resilience

3. Results: D-semble finds ensembles 9% more resilient against 
bagging (best baseline)
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