# **N-VERSION PROGRAMMING FOR ML COMPONENTS**

### ARPAN GUJARATI (MPI-SWS, GERMANY) SATHISH GOPALAKRISHNAN, KARTHIK PATTABIRAMAN (UBC, CANADA)











### WHAT IS N-VERSION PROGRAMMING (NVP)?



# Software engineering principle to improve the reliability of software operations



### WHAT IS N-VERSION PROGRAMMING (NVP)?

**Beautiful but fallacious theory!** 

by building in fault tolerance through redundancy





# Software engineering principle to improve the reliability of software operations





### **Observation**

# NVP FOR PROGRAMMED COMPONENTS

## NVP FOR ML COMPONENTS





### **Observation**

# **NVP FOR PROGRAMMED COMPONENTS** NVP FOR ML COMPONENTS -

- Unlike programmed components, ML components are trained
  - i.e., using supervised, unsupervised, or reinforcement learning
- - ML frameworks such as PyTorch, TensorFlow, and TVM can generate ML models with different execution plans
  - DNNs can be trained with different network structures (e.g., image recognition using ResNet50 and ResNet101)
  - Ensemble techniques can be used to train models with distinct random choices



Generating diverse ML components doesn't require extra programming effort, but only extra computations





### NEW OPPORTIN

- Generate and execute hundreds of diverse replicas inside an NVX
- - In contrast, an inference accuracy of 75% 90% is common among DNNs

Need to investigate the problem and the benefits of **NVP for ML components** with a **fresh perspective!** 

Improve the baseline reliability of ML components, which is relatively low For example, reliability of programmed components is typically measured in "nines"



### NEW OPPORTIN

- Generate and execute hundreds of diverse replicas inside an NVX
- Improve the baseline reliability of ML components, which is relatively low
  - For example, reliability of programmed components is typically measured in "nines"
  - In contrast, an inference accuracy of 75% 90% is common among DNNs

Need to investigate the problem and the benefits of **NVP for ML components** with a **fresh perspective!** 

### **THIS WORK**

Mathematical modeling to illustrate the benefits of NVP for ML components



# **KEY CONTRIBUTIONS**



### **KEY CONTRIBUTIONS**

### Reliability modeling in the presence of permanent faults, capturing

- ML components with baseline reliability under 100%
- NVX with hundreds of versions or ML component replicas
- Parameterized diversity percentage among each pair of replicas
- Sequential and concurrent execution semantics
- Redundancy suppression using voting quorums of different sizes



# **KEY CONTRIBUTIONS**

**NVP** with tens to hundreds of replicas can significantly improve the baseline reliability of ML components

### Reliability modeling in the presence of permanent faults, capturing

- ML components with baseline reliability under 100%
- NVX with hundreds of versions or ML component replicas
- Parameterized diversity percentage among each pair of replicas
- Sequential and concurrent execution semantics
- Redundancy suppression using voting quorums of different sizes

### **WOSOCER 2020**

**Reliability gains are sensitive to the NVX** design and the diversity percentage

Numerical evaluation using MNIST digit classification and TIMIT speech recognition tasks









### **1. APPROXIMATION USING EXPONENTIAL FUNCTIONS**

Baseline reliability of an ML component in the presence of *x* permanent faults:

$$R(x) = \alpha e^{-\beta x} \, (\alpha <$$

1)



## **1. APPROXIMATION USING EXPONENTIAL FUNCTIONS**

Baseline reliability of an ML component in the presence of *x* permanent faults:



Zhang JJ, Basu K, Garg S. Fault-tolerant systolic array based accelerators for deep neural network execution. IEEE Design & Test. 2019 May 8;36(5):44-53.





In practice, without any replication, i.e., with N = 1





In practice, without any replication, i.e., with N = 1



We logically decompose each ML component into two parts





In practice, without any replication, i.e., with N = 1

Input -----> ML COMPONENT -----> C

We logically decompose each ML component into two parts





In practice, without any replication, i.e., with N = 1

**ML COMPONENT** Input

We logically decompose each ML component into two parts





In practice, without any replication, i.e., with N = 1

**ML COMPONENT** Input

We logically decompose each ML component into two parts





In practice, without any replication, i.e., with N = 1

**ML COMPONENT** Input

We logically decompose each ML component into two parts



Classification Output





**quantifiable diversity!** 





### **EXPERIMENT METHODOLOGY**



Zhang JJ, Basu K, Garg S. Fault-tolerant systolic array based accelerators for deep neural network execution. IEEE Design & Test. 2019 May 8;36(5):44-53.

# $R(x) = \alpha e^{-\beta x}$ Baseline ML component reliability in the presence of x faults



### **EXPERIMENT METHODOLOGY**



Zhang JJ, Basu K, Garg S. Fault-tolerant systolic array based accelerators for deep neural network execution. IEEE Design & Test. 2019 May 8;36(5):44-53.

### $R(x) = \alpha e^{-\beta x}$ Baseline ML component reliability in the presence of x faults

Denoting the baseline reliability of each subcomponent using R(x)

$$,2,\ldots,N\}:R_{n,identity}(x)=R_{n,diversity}(x)=R(x)$$





### **EXPERIMENT METHODOLOGY**



neural network execution. IEEE Design & Test. 2019 May 8;36(5):44-53.

cause correlated failures in the identity subcomponents • Quorum size of min(2, N) vs. a majority quorum size of  $\lfloor N/2 + 1 \rfloor$ 







11







---- 
$$R(x) = 77.4 e^{-0.11x}$$
  
 $R_{NVX, seq}(x), N \in [2, 32]$   
 $R_{NVX, seq}(x), N \in [33, 6]$ 

56 64







---- 
$$R(x) = 77.4 e^{-0.11x}$$
  
 $R_{NVX, seq}(x), N \in [2, 32]$   
 $R_{NVX, seq}(x), N \in [33, 6]$   
 $R_{NVX, con}(x), N \in [2, 32]$ 









---- 
$$R(x) = 77.4 e^{-0.11x}$$
  
 $R_{NVX, seq}(x), N \in [2, 32]$   
 $R_{NVX, seq}(x), N \in [33, 6]$   
 $R_{NVX, con}(x), N \in [2, 32]$   
 $R_{NVX, con}(x), N \in [33, 6]$ 

56 64







---- 
$$R(x) = 77.4 e^{-0.11x}$$
  
 $R_{NVX, seq}(x), N \in [2, 32]$   
 $R_{NVX, seq}(x), N \in [33, 6]$   
 $R_{NVX, con}(x), N \in [2, 32]$   
 $R_{NVX, con}(x), N \in [33, 6]$ 

56 64

















RESULTS USING TIMIT(different quorum sizes and diversity percentages)(quorum size of min(2, N), diversity percentage 50%)



1. Quorum size of  $\lfloor N/2 + 1 \rfloor$  (simple majority)



### **WOSOCER 2020**

(different quorum sizes and diversity percentages)



1. Quorum size of  $\lfloor N/2 + 1 \rfloor$  (simple majority)



### **WOSOCER 2020**

(different quorum sizes and diversity percentages)



# **RESULTS USING TIMIT**

1. Quorum size of  $\lfloor N/2 + 1 \rfloor$  (simple majority)



(different quorum sizes and diversity percentages)

(quorum size of min(2, N), diversity percentage 50%)

### 2. Varying the diversity percentage (N = 32)





# **RESULTS USING TIMIT**

1. Quorum size of  $\lfloor N/2 + 1 \rfloor$  (simple majority)



(different quorum sizes and diversity percentages)

(quorum size of min(2, N), diversity percentage 50%)



### SUMMARY

- Historically, NVP has faced criticism!
- NVP for ML components is different, needs to be revisited
  - There is potential to significantly improve ML component reliability
  - Our mathematical modeling demonstrated some of these benefits
- Future work
  - Does our logical decomposition hold in practice? Test using simulations, FI
  - Can we achieve such high replica diversity? Is the diversity quantifiable?
  - NVX design space (including voting schemes) need to be explored further

to be revisited onent reliability f these benefits

using simulations, Fl sity quantifiable? be explored further









### SUMMARY

- Historically, NVP has faced criticism!
- NVP for ML components is different, needs to be revisited
  - There is potential to significantly improve ML component reliability
  - Our mathematical modeling demonstrated some of these benefits
- Future work
  - Does our logical decomposition hold in practice? Test using simulations, FI
  - Can we achieve such high replica diversity? Is the diversity quantifiable?
  - NVX design space (including voting schemes) need to be explored further

## THANK YOU! QUESTIONS?

to be revisited onent reliability f these benefits

using simulations, Fl sity quantifiable? be explored further







