Publications
Thesis
A. Gujarati. Towards ‘Ultra-Reliable’ CPS: Reliability Analysis of Distributed Real-Time Systems. MPI-SWS and TU Kaiserslautern, 2020. SIGBED Paul Caspi Memorial Dissertation Award | PDF | Slides | BibTex
Conferences
A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. D-semble: Efficient Diversity-Guided Search for Resilient ML Ensembles. To appear at SAC 2025. PDF | Code
P. Schowitz, S. Sinha, and A. Gujarati. Response-Time Analysis of a Soft Real-time NVIDIA Holoscan Application. To appear at RTSS 2024. PDF | Slides | Code
Z. Wattoo, P. Vitis, R. Zhu, N. Depner, I. Zhang, J. Hein, A. Gujarati, and M. Seltzer. Practical Experience Report: RABIT, a Robot Arm Bug Intervention Tool for Self-Driving Labs. DSN 2024. PDF | Code
A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. Evaluating the Effect of Common Annotation Faults on Object Detection Techniques. ISSRE 2023. PDF | Code
A. Gujarati, N. Yang, and B. Brandenburg. In-ConcReTeS: Interactive Consistency meets Distributed Real-Time Systems, Again! RTSS 2022. Best Paper Award | PDF | Slides | Teaser Video | Code
A. Gujarati, Z. Wattoo, M. Aliabadi, S. Clark, X. Liu, P. Shiri, A. Trivedi, R. Zhu, J. Hein, and M. Seltzer. Arming IDS Researchers with a Robotic Arm Dataset. DSN 2022. PDF | Slides | Video | Teaser Video | Code
A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications. DSN 2022. PDF | Slides | Teaser Video | Code
A. Chan, N. Narayanan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. Understanding the Resilience of Neural Network Ensembles against Faulty Training Data. QRS 2021. Best Paper Award | PDF | Video | Code
A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson, and J. Mace. Serving DNNs like Clockwork: Performance Predictability from the Bottom Up. OSDI 2020. Distinguished Artifact Award | PDF | Slides | Video | Code | SIGOPS Post
A. Gujarati, S. Bozhko, and B. Brandenburg. Real-Time Replica Consistency over Ethernet with Reliability Bounds. RTAS 2020. Distinguished Paper Award | PDF | Extended Version | Slides | Video
A. Gujarati, M. Nasri, R. Majumdar, and B. Brandenburg. From Iteration to System Failure: Characterizing the FITness of Periodic Weakly-Hard Systems. ECRTS 2019. PDF | Extended Version | Slides
A. Gujarati, M. Nasri, and B. Brandenburg. Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems. ECRTS 2018. Best Presentation Award | PDF | Extended Version | Slides | Poster
M. Vanga, A. Gujarati, and B. Brandenburg. Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads. EuroSys 2018. PDF
A. Gujarati, S. Elnikety, Y. He, K. McKinley, and B. Brandenburg. Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning Inference Services with Resource Efficiency. Middleware 2017. Best Student Paper Award | Paper | Appendix | Slides
A. Gujarati, and B. Brandenburg. When is CAN the Weakest Link? A Bound on Failures-In-Time in CAN-Based Real-Time Systems. RTSS 2015. PDF | Slides | Poster
F. Cerqueira, A. Gujarati, and B. Brandenburg. Linux’s Processor Affinity API, Refined: Shifting Real-Time Tasks towards Higher Schedulability. RTSS 2014. PDF | Slides | RTEMS Patch
A. Gujarati, F. Cerqueira, and B. Brandenburg.
Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary
Processor Affinities.
ECRTS 2013.
Outstanding Paper Award | PDF | Slides | Poster
Journals
A. Gujarati, F. Cerqueira, B. Brandenburg, and G. Nelissen. Correspondence Article: A Correction of the Reduction-Based Schedulability Analysis for APA Scheduling. Real-Time Systems 2018. PDF | Springer Link
A. Gujarati, F. Cerqueira, and B. Brandenburg.
Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities:
From Practice to Theory.
Real-Time Systems 2015.
PDF | Springer
Link
Workshops
A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. Hierarchical Unlearning Framework for Multi-Class Classification. FITML 2024. PDF | Slides
A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. Harnessing Explainability to Improve ML Ensemble Resilience. DSN 2024 Disrupt Track. PDF | Slides
A. Gujarati, S. Gopalakrishnan, and K. Pattabiraman. New Wine in an Old Bottle: N-Version Programming for Machine Learning Components. WoSoCer 2020. PDF | Slides
M. Nasri, A. Gujarati, and B. Brandenburg. Using Schedule-Abstraction Graphs for the Analysis of CAN Message Response Times. CERTS 2018. PDF | Slides
A. Gujarati, M. Nasri, and B. Brandenburg. Lower-Bounding the MTTF for Systems with (m, k) Constraints and IID Iteration Failure Probabilities. CERTS 2017. PDF | Technical Report | Slides